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UNIT I INTRODUCTION TO MICROWAVE SYSTEMS AND ANTENNAS 

Electromagnetic spectrum: 

 

Microwave Frequency Bands: 
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Physical Concept of Radiation ( Radiation Mechanism) 

One of the first questions that may be asked concerning antennas would be “how is 

radiation accomplished?” 

In other words, how are the electromagnetic fields generated by the source, contained and 

guided within the transmission line and antenna, and finally “detached” from the antenna 

to form a free-space wave? 

Let us first examine some basic sources of radiation. 

Radiation from Single Wire  

Conducting wires are material whose prominent characteristic is the motion of electric 

charges and the creation of current flow.  

Let us assume that an electric volume charge density, represented by qv (coulombs/m3), is 

distributed uniformly in a circular wire of cross-sectional area A and volume V, as shown 

in Figure.  

 

 

The total charge Q with in volume V is moving in the z direction with a uniform velocity 

vz (meters/sec). It can be shown that the current density Jz (amperes/m2) over the cross 

section of the wire is given by  

Jz = qvvz                         (1a)  

If the wire is made of an ideal electric conductor, the current density Js (amperes/m) resides 

on the surface of the wire and it is given by  

Js = qsvz                                       (1b)  

where qs (coulombs/m2) is the surface charge density.  

If the wire is very thin (ideally zero radius), then the current in the wire can be represented 

by  

Iz = qlvz                           (1c) 
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where ql (coulombs/m) is the charge per unit length. Instead of examining all three current 

densities, we will primarily concentrate on the very thin wire. The conclusions apply to all 

three.  

If the current is time varying, then the derivative of the current of (1c) can be written as  

dIz /dt = ql dvz /dt = qlaz                         (2) 

where dvz/dt = az (meters/sec2) is the acceleration. If the wire is of length l, then (2) can 

be written as  

l dIz /dt = lql dvz /dt = lqlaz                    (3) 

Equation (3) is the basic relation between current and charge, and it also serves as the 

fundamental relation of electromagnetic radiation. 

It simply states that to create radiation, there must be a time-varying current or an 

acceleration (or deceleration) of charge. We usually refer to currents in time-harmonic 

applications while charge is most often mentioned in transients. To create charge 

acceleration (or deceleration) the wire must be curved, bent, discontinuous, or terminated. 

Periodic charge acceleration (or deceleration) or time-varying current is also created when 

charge is oscillating in a time-harmonic motion. 

Important Conclusions: 

(i)If a charge is not moving, current is not created and there is no radiation.  

(ii)If charge is moving with a uniform velocity: 

(a)There is no radiation if the wire is straight, and infinite in extent. 

(b)There is radiation if the wire is curved, bent, discontinuous, terminated, or 

truncated, as shown in Figure  

(iii)If charge is oscillating in a time-motion, it radiates even if the wire is straight. 

 

A qualitative understanding of the radiation mechanism may be obtained by 

considering a pulse source attached to an open-ended conducting wire, which may be 

connected to the ground through a discrete load at its open end, as shown in Figure (d).  

When the wire is initially energized, the charges (free electrons) in the wire are set in 

motion by the electrical lines of force created by the source. When charges are accelerated 

in the source-end of the wire and decelerated (negative acceleration with respect to original 

motion) during reflection from its end, it is suggested that radiated fields are produced at 

each end and along the remaining part of the wire. 

 Stronger radiation with a more broad frequency spectrum occurs if the pulses are of 

shorter or more compact duration while continuous time-harmonic oscillating charge 

produces, ideally, radiation of single frequency determined by the frequency of oscillation. 
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The acceleration of the charges is accomplished by the external source in which forces 

set the charges in motion and produce the associated field radiated. The deceleration of the 

charges at the end of the wire is accomplished by the internal (self) forces associated with 

the induced field due to the build up of charge concentration at the ends of the wire. The 

internal forces receive energy from the charge build up as its velocity is reduced to zero at 

the ends of the wire. Therefore, charge acceleration due to an exciting electric field and 

deceleration due to impedance discontinuities or smooth curves of the wire are 

mechanisms responsible for electromagnetic radiation.  
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Radiation from Two-Wires 

Let us consider a voltage source connected to a two-conductor transmission line which 

is connected to an antenna. This is shown in Figure. Applying a voltage across the two-

conductor transmission line creates an electric field between the conductors. The electric 

field has associated with it electric lines of force which are tangent to the electric field at 

each point and their strength is proportional to the electric field intensity. The electric lines 

of force have a tendency to act on the free electrons (easily detachable from the atoms) 

associated with each conductor and force them to be displaced. The movement of the 

charges creates a current that in turn creates a magnetic field intensity. Associated with the 

magnetic field intensity are magnetic lines of force which are tangent to the magnetic field.  

We have accepted that electric field lines start on positive charges and end on negative 

charges. They also can start on a positive charge and end at infinity, start at infinity and end 

on a negative charge, or form closed loops neither starting or ending on any charge. 

Magnetic field lines always form closed loops encircling current-carrying conductors 

because physically there are no magnetic charges. 

 

 

The electric field lines drawn between the two conductors help to exhibit the distribution 

of charge. If we assume that the voltage source is sinusoidal, we expect the electric field 

between the conductors to also be sinusoidal with a period equal to that of the applied source. 

The relative magnitude of the electric field intensity is indicated by the density (bunching) of 
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the lines of force with the arrows showing the relative direction (positive or negative). The 

creation of time-varying electric and magnetic fields between the conductors forms 

electromagnetic waves which travel along the transmission line, as shown in Figure (a). 

 The electromagnetic waves enter the antenna and have associated with them electric 

charges and corresponding currents. If we remove part of the antenna structure, as shown in 

Figure (b), free-space waves can be formed by “connecting” the open ends of the electric lines 

(shown dashed).  

The free-space waves are also periodic but a constant phase point P0 moves outwardly with 

the speed of light and travels a distance of λ/2 (to P1) in the time of one-half of a period. It has 

been shown  that close to the antenna the constant phase point P0 moves faster than the speed 

of light but approaches the speed of light at points far away from the antenna (analogous to 

phase velocity inside a rectangular waveguide).  

free-space waves and water waves -analogy 

The question still unanswered is how the guided waves are detached from the antenna to 

create the free-space waves that are indicated as closed loops. Before we attempt to explain 

that, let us draw a parallel between the guided and free-space waves, and water waves  created 

by the dropping of a pebble in a calm body of water or initiated in some other manner.  

Once the disturbance in the water has been initiated, water waves are created which begin 

to travel outwardly. If the disturbance has been removed, the waves do not stop or extinguish 

themselves but continue their course of travel. If the disturbance persists, new waves are 

continuously created which lag in their travel behind the others. The same is true with the 

electromagnetic waves created by an electric disturbance. 

 If the initial electric disturbance by the source is of a short duration, the created 

electromagnetic waves travel inside the transmission line, then into the antenna, and finally are 

radiated as free-space waves, even if the electric source has ceased to exist (as was with the 

water waves and their generating disturbance). If the electric disturbance is of a continuous 

nature, electromagnetic waves exist continuously and follow in their travel behind the 

others.This is shown in Figure for a biconical antenna. When the electromagnetic waves are 

within the transmission line and antenna, their existence is associated with the presence of the 

charges inside the conductors. However, when the waves are radiated, they form closed loops 

and there are no charges to sustain their existence. This leads us to conclude that electric 

charges are required to excite the fields but are not needed to sustain them and may exist in 

their absence. This is in direct analogy  the water waves. 
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Isotropic, Directional, and Omnidirectional Patterns  

An isotropic radiator is defined as “a hypothetical lossless antenna having equal 

radiation in all directions.” Although it is ideal and not physically realizable, it is often taken 

as a reference for expressing the directive properties of actual antennas.  

A directional antenna is one “having the property of radiating or receiving 

electromagnetic waves more effectively in some directions than in others”. Example of antenna 

with directional radiation patterns is shown in Figure. 

 

  It is seen that the pattern  in Figure below  is nondirectional in the azimuth plane [f (φ), 

θ = π/2] and directional in the elevation plane [g(θ ), φ = constant]. This type of a pattern is 

designated as omnidirectional, and it is defined as one “having an essentially nondirectional 

pattern in a given plane (in this case in azimuth) and a directional pattern in any orthogonal 

plane (in this case in elevation).” An omnidirectional pattern is then a special type of a 

directional pattern. 
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Antenna near and far field(Field Regions of Antenna) 

 The space surrounding an antenna is usually subdivided into three regions: 

 (a) reactive near-field,  

(b) radiating near-field (Fresnel) and  

(c) far-field (Fraunhofer) regions as shown in Figure . 

 
 These regions are so designated to identify the field structure in each. Although no abrupt 

changes in the field configurations are noted as the boundaries are crossed, there are distinct 

differences among them.  

Reactive near-field region 

Reactive near-field region is defined as “that portion of the near-field region 

immediately surrounding the antenna wherein the reactive field predominates.” For most 

antennas, the outer boundary of this region is commonly taken to exist at a distance 𝑅 <

0.62√𝐷3

𝜆⁄   from the antenna surface, where λ is the wavelength and D is the largest dimension 

of the antenna. “For a very short dipole, or equivalent radiator, the outer boundary is commonly 

taken to exist at a distance λ/2π from the antenna surface.” 

Radiating near-field (Fresnel) region 

Radiating near-field (Fresnel) region is defined as “that region of the field of an antenna 

between the reactive near-field region and the far-field region wherein radiation fields 

predominate and wherein the angular field distribution is dependent upon the distance from the 

antenna.  

If the antenna has a maximum dimension that is not large compared to the wavelength, 

this region may not exist. For an antenna focused at infinity, the radiating near-field region is 

sometimes referred to as the Fresnel region on the basis of analogy to optical terminology. If 

the antenna has a maximum overall dimension which is very small compared to the wavelength, 

this field region may not exist.” The inner boundary is taken to be the distance 𝑅 ≥ 0.62√𝐷3

𝜆⁄  

and the outer boundary the distance R < 2D2/λ where D is the largest∗ dimension of the antenna. 

This criterion is based ona maximum phase error of π/8. In this region the field pattern is, in 

general, a function of the radial distance and the radial field component may be appreciable. 

 

∗To be valid, D must also be large compared to the wavelength (D > λ) 
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Far-field (Fraunhofer) region 

Far-field (Fraunhofer) region is defined as “that region of the field of an antenna where 

the angular field distribution is essentially independent of the distance from the antenna. If the 

antenna has a maximum∗ overall dimension D, the far-field region is commonly taken to exist 

at distances greater than 2D2/λ from the antenna, λ being the wavelength.  

The far-field patterns of certain antennas, such as multibeam reflector antennas, are 

sensitive to variations in phase over their apertures. For these antennas 2D2/λ may be 

inadequate. In physical media, if the antenna has a maximum overall dimension, D, which is 

large compared to π/|γ |, the far-field region can be taken to begin approximately at a distance 

equal to |γ |D2/π from the antenna, γ being the propagation constant in the medium.  

For an antenna focused at infinity, the far-field region is sometimes referred to as the 

Fraunhofer region on the basis of analogy to optical terminology.” In this region, the field 

components are essentially transverse and the angular distribution is independent of the radial 

distance where the measurements are made. The inner boundary is taken to be the radial 

distance R = 2D2/λ and the outer one at infinity. 

The amplitude pattern of an antenna in different regions 

The amplitude pattern of an antenna, as the observation distance is varied from the 

reactive near field to the far field, changes in shape because of variations of the fields, both 

magnitude and phase.  

A typical progression of the shape of an antenna, with the largest dimension D, is shown 

in Figure. It is apparent that in the reactive near field region the pattern is more spread out and 

nearly uniform, with slight variations. As the observation is moved to the radiating near-field 

region(Fresnel), the pattern begins to smooth and form lobes. In the far-field region 

(Fraunhofer), the pattern is well formed, usually consisting of few minor lobes and one, or 

more, major lobes. 

 
Figure: Typical changes of antenna amplitude pattern shape from reactive near field 

toward the far field 
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Antenna Parameters 

 
(a)Radiation pattern. 

The radiation pattern of an antenna is a plot of the magnitude of the far-zone field 

strength versus position around the antenna, at a fixed distance from the antenna. 

Thus the radiation pattern can be plotted from the pattern function Fθ (θ,φ) or Fφ(θ,φ), 

versus either the angle θ (for an elevation plane pattern) or the angle φ (for an azimuthal plane 

pattern). The choice of plotting either Fθ or Fφ is dependent on the polarization of the antenna.  

 

(b)main lobe, side lobe, minor lobe and back lobe with reference to antenna radiation 

pattern. 

Major Lobe:  Major lobe is also called as main beam and is defined as “the radiation lobe 

containing the direction of maximum radiation”. In some antennas, there may be more than 

one major lobe. 

Minor lobe: All the lobes except the major lobes are called minor lobe. 

Side lobe: A side lobe is adjacent to the main lobe.  

Back lobe: Normally refers to a minor lobe that occupies the hemisphere in a direction 

opposite to that of the major(main) lobe . 

• Minor lobes normally represents radiation in undesired directions and they should be 

minimized. 

 

 
 

(c) Half Power Beam Width (HPBW) of an antenna. 

Half Power Beam Width is a measure of directivity of an antenna. It is an angular 

width in degrees, measured on the radiation pattern (main lobe) between points where the 

radiated power has fallen to half its maximum value. 
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(d) beam solid angle 

The beam area or beam solid angle  
A  for antenna is given by integral of the 

normalized power pattern over a sphere. 
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Beam solid angle is also given approximately by 
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(e) Beam Width between First Null 

Beam width between first null (BWFN) is the angular width in degrees, measured on 

the radiation pattern between first null points on either side of the main lobe. 

 
 

 

(f)Radiation Intensity 

            Radiation Intensity 𝑈(𝜃, ∅) in given direction is defined as the power per unit solid 

angle in that direction. 

• The power radiated per unit area in any direction is given by pointing vector P. 

• For distant field  for which E and H are orthogonal in a plane normal to the radius 

vector, 

           The power flow per unit area is given by  sqmwatts
E

P
v

/
2


=  

•  There are 2r  square meters of surface area per unit solid angle( or steradian). 

• 𝑈(𝜃, ∅) = 𝑟2𝑃 =
𝑟2𝐸2

𝜂𝑣
𝑤𝑎𝑡𝑡𝑠/𝑢𝑛𝑖𝑡 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 

 The radiation intensity gives the variation in radiated power versus position around the 

antenna. We can find the total power radiated by the antenna by integrating the Poynting vector 

over the surface of a sphere that encloses the antenna. This is equivalent to integrating the 

radiation intensity over a unit sphere.  

𝑃𝑟𝑎𝑑 = 𝑃𝑜𝑤𝑒𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 = ∫ ∫ 𝑈(𝜃, ∅)𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅

𝜋

𝜃=0

2𝜋

∅=0

 

(g) Directivity of an antenna 

 The directivity(D) of an antenna is defined as the ratio of the maximum value of the 

power radiated per unit solid angle to the average power radiated per unit solid angle.  

That is, directivity is ratio of the maximum radiation intensity in the main beam to the average 

radiation intensity over all space. 
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𝐷 =
𝑈𝑚𝑎𝑥

𝑈𝑎𝑣𝑔
=

𝑈𝑚𝑎𝑥

𝑃𝑟𝑎𝑑
4𝜋⁄

=
4𝜋𝑈𝑚𝑎𝑥

∫ ∫ 𝑈(𝜃, ∅)𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅
𝜋

𝜃=0

2𝜋

∅=0

 

Thus, the directivity measures how intensely the antenna radiates in its preferred direction than 

an isotropic radiator would when fed with the same total power. 

Directivity is a dimensionless ratio of power, and is usually expressed in dB as D(dB) = 10 

log(D) 

directivity of isotropic radiator: 

 An isotropic radiator is a hypothetical loss less radiator having equal radiation in all 

directions.  

U(θ,φ) = 1  for isotropic antenna. Applying the integral identity, ∫ ∫ 𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅ = 4𝜋
𝜋

𝜃=0

2𝜋

∅=0
,  

we have, 

  

𝐷 =
4𝜋𝑈𝑚𝑎𝑥

∫ ∫ 𝑈(𝜃, ∅)𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅
𝜋

𝜃=0

2𝜋

∅=0

= 1 

 

The directivity of an isotropic antenna is D = 1, or 0 dB. 

 

Relationship between Directivity and beamwidth 

Beamwidth and directivity are both measures of the focusing ability of an antenna: an antenna 

pattern with a narrow main beam will have a high directivity, while a pattern with a wide beam 

will have a lower directivity.  

Approximate relation between beam width and directivity that apply with reasonable 

accuracy  for antennas with pencil beam patterns is the following: 

𝐷 ≅
32,000

𝜃1𝜃2
      where θ1 and θ2 are the beam widths in two orthogonal planes of the main 

beam, in degrees. This approximation does not work well for omnidirectional patterns because 

there is a well-defined main beam in only one plane for such patterns. 

(h) radiation efficiency of antenna 

Radiation efficiency of an antenna is defined  as the ratio of the radiated output power to the 

supplied input power. 

𝜂𝑟𝑎𝑑 =
𝑃𝑟𝑎𝑑

𝑃𝑖𝑛
=

𝑃𝑖𝑛 − 𝑃𝑙𝑜𝑠𝑠

𝑃𝑖𝑛
= 1 −

𝑃𝑙𝑜𝑠𝑠

𝑃𝑖𝑛
 

where Prad is the power radiated by the antenna, Pin is the power supplied to the input of the 

antenna, and Ploss is the power lost in the antenna(dissipative losses) due to metal conductivity 

or dielectric loss with in the antenna. 

 

(i)Gain of an antenna 

The gain of the antenna is closely related to the directivity, it is a measure that takes into 

account the efficiency of the antenna as well as its directional capabilities.  

Antenna gain is defined as the product of directivity and efficiency: 

 𝐺𝑎𝑖𝑛 = 𝐺 = 𝜂𝑟𝑎𝑑 × 𝐷.  

 Thus, gain is always less than or equal to directivity.  

(j) Aperture efficiency 

Aperture efficiency is defined as the ratio of the actual directivity of an aperture antenna to the 

maximum directivity  of aperture antenna. 
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The maximum directivity that can be obtained from an electrically large aperture of area A is 

given as,   𝐷𝑚𝑎𝑥 =
4𝜋𝐴

𝜆2  

𝜂𝑎𝑝 = 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑦 =
𝐷

𝐷𝑚𝑎𝑥
  

 

(k) Effective aperture area 

Received power is proportional to the power density, or Poynting vector, of the incident wave.  

Since the Poynting vector has dimensions of W/m2, and the received power, Pr, has dimensions 

of W, the proportionality constant must have units of area.  

 We have,   𝑃𝑟 = 𝐴𝑒 × 𝑆𝑎𝑣𝑔  

where Ae is defined as the effective aperture area of the receive antenna. The effective aperture 

area has dimensions of m2, and can be interpreted as the “capture area” of a receive antenna, 

intercepting part of the incident power density radiated toward the receive antenna. 

relation between effective aperture area and Directivity(gain) 

The maximum effective aperture area of an antenna is related to the directivity of the antenna 

as, 

𝐴𝑒 =
𝐷𝜆2

4𝜋
  

The maximum effective aperture area as defined above does not include the effect of losses in 

the antenna, which can be accounted for by replacing D with G, the gain, of the antenna. 

𝐴𝑒 =
𝐺𝜆2

4𝜋
  

 

(l)Antenna Brightness temperature 

When the antenna beam width is broad enough that different parts of the antenna pattern see 

different background temperatures, the effective brightness temperature seen by the antenna 

can be found by weighting the spatial distribution of background temperature by the pattern 

function of the antenna. 

 Mathematically we can write the brightness temperature Tb seen by the antenna as  

𝑇𝑏 =
∫ ∫ 𝑇𝐵(𝜃, ∅)𝐷(𝜃, ∅)𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅

𝜋

𝜃=0

2𝜋

∅=0

∫ ∫ 𝐷(𝜃, ∅)𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅
𝜋

𝜃=0

2𝜋

∅=0

 

   Where 𝑇𝐵(𝜃, ∅)  is the distribution of the background temperature, and 𝐷(𝜃, ∅) is the 

directivity (or the power pattern function) of the antenna. Antenna brightness temperature is 

referenced at the terminals of the antenna. Observe that when TB is a constant,  Tb = TB   

(m) Antenna Noise Temperature 

If a receiving antenna has dissipative loss, so that its radiation efficiency ηrad is less than 

unity, the power available at the terminals of the antenna is reduced by the factor ηrad from that 

intercepted by the antenna (the definition of radiation efficiency is the ratio of output to input 

power).  

This reduction applies to received noise power, as well as received signal power, so the 

noise temperature of the antenna will be reduced from the brightness temperature by the factor 

ηrad.  

In addition, thermal noise will be generated internally by resistive losses in the antenna, 

and this will increase the noise temperature of the antenna. We can find the resulting noise 

temperature seen at the antenna terminals as, 

 TA =  ηradTb + (1 − ηrad)Tp.  
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The equivalent temperature TA is called the antenna noise temperature, and is a 

combination of the external brightness temperature seen by the antenna and the thermal noise 

generated by the antenna. 

 Note: This temperature is referenced at the output terminals of the antenna. 

  TA = Tb for a lossless antenna with ηrad = 1.  

If the radiation efficiency is zero, meaning that the antenna appears as a matched load and does 

not see any external background noise, then TA = Tp , due to the thermal noise generated by the 

losses.  

 (n)G/T ratio 

Useful figure of merit for receive antennas is the G/T ratio, defined as 10 log( G/ TA)  

dB/K,  where G is the gain of the antenna, and TA is the antenna noise temperature.  

This quantity is important because, the signal-to-noise ratio (SNR) at the input to a 

receiver is proportional to G/TA. The ratio G/T can often be maximized by increasing the gain 

of the antenna, since this increases the numerator and usually minimizes reception of noise 

from hot sources at low elevation angles. Of course, higher gain requires a larger and more 

expensive antenna, and high gain may not be desirable for applications requiring 

omnidirectional coverage (e.g., cellular telephones or mobile data networks), so often a 

compromise must be made. 

Note: that the dimensions given  for 10 log(G/T ) are not actually decibels per degree kelvin, 

but this is the nomenclature that is commonly used for this quantity.  
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Friis Transmission Formula 

This formula gives the power received over a radio communication link. 

  

Let the transmitter feed a power Pt to a transmitting antenna of effective aperture Aet.At a 

distance r a receiving antenna of effective aperture Aer, intercepts some of the power radiated 

by the transmitting antenna and delivers it to the receiver. 

Assuming that the transmitting antenna is isotropic, the power per unit area at the receiving 

antenna is 

𝑆𝑟 =
𝑃𝑡

4𝜋𝑟2           (W)   ----- 1 

If the transmitting antenna has gain Gt, the power per unit area at the receiving antenna will be 

increased in proportion as given by, 

𝑆𝑟 =
𝑃𝑡𝐺𝑡

4𝜋𝑟2           (w)      ------- 2 

Now, the power collected by the receiving antenna of effective aperture Aer is,  

𝑃𝑟 =  𝐴𝑒𝑟𝑆𝑟 =
𝐴𝑒𝑟𝑃𝑡𝐺𝑡

4𝜋𝑟2        (w)   --------3 

The gain of the transmitting antenna can be expressed as, 

𝐺𝑡 =
4𝜋𝐴𝑒𝑡

𝜆2        ----- 4a 

𝐺𝑟 =
4𝜋𝐴𝑒𝑟

𝜆2
     ------ 4b 

Substituting for gain in equation 3, we have, 

𝑃𝑟 =
𝐴𝑒𝑟𝑃𝑡𝐴𝑒𝑡4𝜋

4𝜋𝑟2𝜆2 =
𝐴𝑒𝑟𝑃𝑡𝐴𝑒𝑡

𝑟2𝜆2    ------- 5a 

  In terms of antenna gain,  received power can be expressed as, 

𝑃𝑟 =
𝐺𝑟𝑃𝑡𝐺𝑡𝜆2

4𝜋×4𝜋𝑟2
=

𝐺𝑟𝑃𝑡𝐺𝑡𝜆2

(4𝜋𝑟)2
        -------- 5b 

Equation 5 is Friis transmission formula  

𝑃𝑟 =
𝐺𝑟𝑃𝑡𝐺𝑡𝜆2

(4𝜋𝑟)2
 

Pr = Received power ( antenna matched) in W 

Pt = power in to transmitting antenna in W 
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Aet = Effective aperture of transmitting antenna, m2 

Aer = Effective aperture of Receiving antenna, m2 

r = distance between transmitting and receiving antenna, m 

λ = wave length, m 

EIRP and it’s significance 

The product PtGt is defined as the Effective Isotropic Radiated Power (EIRP). 

 EIRP = PtGt   W 

 For a given frequency, range, and receiver antenna gain, the received power is proportional to 

the EIRP of the transmitter and received power can only be increased by increasing the EIRP. 

This can be done by increasing the transmit power, or the transmit antenna gain, or both. 

Path Loss 

Path loss is the quantity that  account for the free-space reduction in signal strength with 

distance between the transmitter and receiver. 

Path loss = Transmitted power- Received power=Pt - Pr 

Assuming unity gain antennas, path loss is given as( using Friis formula) 

𝑝𝑎𝑡ℎ 𝑙𝑜𝑠𝑠 (𝑑𝐵) = 20 𝑙𝑜𝑔 (
4𝜋𝑟

𝜆
) 

 

Link Budget and Link Margin 

The various terms in the Friis formula are often tabulated separately in a link budget, where 

each of the factors can be individually considered in terms of its net effect on the received 

power.  

Additional loss factors, such as line losses or impedance mismatch at the antennas, atmospheric 

attenuation, and polarization mismatch can also be added to the link budget.  

 

One of the terms in a link budget is the path loss, accounting for the free-space reduction in 

signal strength with distance between the transmitter and receiver. 

 

Path loss= Transmitted power- Received power=Pt-Pr 

Assuming unity gain antennas, path loss is given as( using Friis formula) 

𝑝𝑎𝑡ℎ 𝑙𝑜𝑠𝑠 (𝑑𝐵) = 20 𝑙𝑜𝑔 (
4𝜋𝑟

𝜆
)  

We can write the budget   as shown in the following link budget:  

 

Transmit power  Pt 

Transmit antenna line loss  (−)Lt 

Transmit antenna gain  Gt 

Path loss (free-space)  (−)L0 

Atmospheric attenuation  (−)LA 

Receive antenna gain  Gr 

Receive antenna line loss  (−)Lr 

  

Receive power Pr 
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We have also included loss terms for atmospheric attenuation and line attenuation. 

Assuming that all of the above quantities are expressed in dB (or dBm, in the case of Pt), we 

can write the receive power as 

                     Pr(dBm) = Pt − Lt + Gt − L0 − LA + Gr − Lr  

 

If the transmit and/or receive antenna is not impedance matched to the transmitter/ 

receiver (or to their connecting lines), impedance mismatch will reduce the received power by 

the factor (1 − |Γ|2 ) where Γ  is the appropriate reflection coefficient.  

 

The resulting impedance mismatch loss,  

                             Limp(dB) = −10 log(1 − | Γ |2) ≥ 0,  

can be included in the link budget to account for the reduction in received power.  

Another possible entry in the link budget relates to the polarization matching of the 

transmit and receive antennas, as maximum power transmission between transmitter and 

receiver requires both antennas to be polarized in the same manner.  

If a transmit antenna is vertically polarized, for example, maximum power will only be 

delivered to a vertically polarized receiving antenna, while zero power would be delivered to a 

horizontally polarized receive antenna, and half the available power would be delivered to a 

circularly polarized antenna.  

Link Margin 

In practical communications systems it is usually desired to have the received power 

level greater than the threshold level required for the minimum acceptable quality of service 

(usually expressed as the minimum carrier-to-noise ratio (CNR), or minimum SNR).  

This design allowance for received power is referred to as the link margin, and can be 

expressed as the difference between the design value of received power and the minimum 

threshold value of receive power: 

 

Link margin (dB) = LM = Pr − Pr(min) > 0,  where all quantities are in dB.  

 

Link margin should be a positive number; typical values may range from 3 to 20 

dB.Having a reasonable link margin provides a level of robustness to the system to account for 

variables such as signal fading due to weather, movement of a mobile user, multipath 

propagation problems, and other unpredictable effects that can degrade system performance. 

Link margin for a given communication system can be improved by increasing the 

received power (by increasing transmit power or antenna gains), or by reducing the minimum 

threshold power (by improving the design of the receiver, changing the modulation method, or 

by other means) 

Fade margin. 

Signal fading occur due to weather, movement of a mobile user, multipath propagation 

problems, and other unpredictable effects that can degrade system performance and quality of 

service. Link margin that is used to account for fading effects is sometimes referred to as fade 

margin.  

 

Noise Characterization of a Microwave Receiver 
(i)NOISE FIGURE and EQUIVALENT NOISE TEMPERATURE of a SYSTEM 

(General concepts) 
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The signal-to-noise ratio is the ratio of desired signal power to undesired noise power, and so 

is dependent on the signal power.  

When noise and a desired signal are applied to the input of a noiseless network, both noise and 

signal will be attenuated or amplified by the same factor, so that the signal-to-noise ratio will 

be unchanged.  

However, if the network is noisy, the output noise power will be increased more than the output 

signal power, so that the output signal-to-noise ratio will be reduced.  

The noise figure, F, is a measure of this reduction in signal-to-noise ratio, and is defined as, 

𝐹 =
𝑆𝑖

𝑁𝑖
⁄

𝑆𝑜
𝑁𝑜

⁄
    ≥ 1               --------------- (1) 

where Si, Ni are the input signal and noise powers, and So, No are the output signal and noise 

powers. By definition, the input noise power is assumed to be the noise power resulting from 

a matched resistor at T0 = 290 K; that is, Ni = kT0B. 

 

 

Consider Figure shown above, which shows noise power Ni and signal power Si being fed into 

a noisy two-port network.  

The network is characterized by a gain, G, a bandwidth, B, and an equivalent noise temperature, 

Te.  

The input noise power is Ni = kT0B, and the output noise power is a sum of the amplified input 

noise and the internally generated noise: No = kGB(T0 + Te).  

The output signal power is So = GSi . Using these results in (1) gives the noise figure as, 

𝐹 =
𝑆𝑖

𝑘𝑇𝑜𝐵
 ×

𝑘𝐺𝐵(𝑇𝑜+𝑇𝑒)

𝐺𝑆𝑖
= 1 +

𝑇𝑒

𝑇𝑜
 ≥ 1    -----------(2) 

𝑇𝑒 = (𝐹 − 1)𝑇𝑜   -----------(3) 

It is important to keep in mind two things concerning the definition of noise figure: noise figure 

is defined for a matched input source, and for a noise source equivalent to a matched load at 

temperature T0 = 290 K. Noise figure and equivalent noise temperatures are interchangeable 

characterizations of the noise properties of a component.  
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An important special case occurs in practice for a two-port network consisting of a passive, 

lossy component, such as an attenuator or lossy transmission line, held at a physical 

temperature T . Consider such a network with a matched source resistor that is also at 

temperature T , as shown in Figure.  

 

The power gain, G, of a lossy network is less than unity; the loss factor, L, can be defined as L 

= 1/G > 1. Because the entire system is in thermal equilibrium at the temperature T, and has a 

driving point impedance of R, the output noise power must be No = kTB. However, we can 

also think of this power as coming from the source resistor (attenuated by the lossy line), and 

from the noise generated by the line itself. Thus we also have that 

 No = kTB = GkTB + G Nadded  ----------(4) 

Where  Nadded is the noise generated by the line, as if it appeared at the input terminals of the 

line. Solving (4) for this power gives 

𝑁𝑎𝑑𝑑𝑒𝑑 =
(1−𝐺)

𝐺
 𝑘𝑇𝐵 = (𝐿 − 1)𝑘𝑇𝐵   ---------- (5) 

Then (5) shows that the lossy line has an equivalent noise temperature (referred to the input) 

given by, 

𝑇𝑒  = (𝐿 − 1)𝑇  ----------- (6) 

 Noise figure is, 

𝐹 = 1 +
(𝐿−1)𝑇

𝑇𝑜
 ≥ 1    -------(7) 

Noise Figure of a Cascaded System 

In a typical microwave system the input signal travels through a cascade of many different 

components, each of which may degrade the signal-to-noise ratio to some degree. If we know 

the noise figure (or noise temperature) of the individual stages, we can determine the noise 

figure (or noise temperature) of the cascade connection of stages.  

We will see that the noise performance of the first stage is usually the most critical, an 

interesting result that is very important in practice. 

 Consider the cascade of two components, having gains G1, G2, noise figures F1, F2, and 

equivalent noise temperatures Te1, Te2, as shown in Figure.  
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We wish to find the overall noise figure and equivalent noise temperature of the cascade, as if 

it were a single component. The overall gain of the cascade is G1G2. 

 Using noise temperatures, we can write the noise power at the output of the first stage as  

N1 = G1kT0B + G1kTe1B    --------------- (8) 

since Ni = kT0B for noise figure calculations. The noise power at the output of the second stage 

is 

 No = G2N1 + G2kTe2B  

        𝑁𝑜 = 𝐺1𝐺2k𝑇𝑜B + 𝐺1𝐺2k𝑇𝑒1B + 𝐺2k𝑇𝑒2B     

𝑁𝑜 = 𝐺1𝐺2𝑘𝐵 (𝑇𝑜 + 𝑇𝑒1 +
𝑇𝑒2

𝐺1
)   -------  (9) 

For the equivalent system we have, 

𝑁𝑜 = 𝐺1𝐺2𝑘𝐵(𝑇𝑜 + 𝑇𝑐𝑎𝑠) ------ (10)  

Where,  

𝑇𝑐𝑎𝑠 =  𝑇𝑒1 +
𝑇𝑒2

𝐺1
     --------- (11) 

Using (3) to convert the temperatures in (11) to noise figures yields the noise figure of the 

cascade system as, 

𝐹𝑐𝑎𝑠 = 𝐹1 +
(𝐹2−1)

𝐺1
  -------- (12) 

Equations (11) and (12) show that the noise characteristics of a cascaded system are dominated 

by the characteristics of the first stage since the effect of the second stage is reduced by the 

gain of the first (assuming G1 > 1).  

Thus, for the best overall system noise performance, the first stage should have a low noise 

figure and at least moderate gain. Expense and effort should be devoted primarily to the first 

stage, as opposed to later stages, since later stages have a diminished impact on the overall 

noise performance.  

Equations (11) and (12) can be generalized to an arbitrary number of stages, as 
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𝑇𝑐𝑎𝑠 =  𝑇𝑒1 +
𝑇𝑒2

𝐺1
+

𝑇𝑒3

𝐺1𝐺2
+   … …      --------(13) 

𝐹𝑐𝑎𝑠 = 𝐹1 +
(𝐹2−1)

𝐺1
+

(𝐹3−1)

𝐺1𝐺2
 +  … …   --------(14) 

(ii) Noise Characterization of Receiver 

We can now analyze the noise characteristics of a complete antenna–transmission line– 

receiver front end, as shown in Figure. In this system the total noise power at the output of the 

receiver, No, will be due to contributions from the antenna pattern, the loss in the antenna, the 

loss in the transmission line, and the receiver components.  

This noise power will determine the minimum detectable signal level for the receiver and, for 

a given transmitter power, the maximum range of the communication link.  

 

 

The receiver components in Figure consist of an RF amplifier with gain GRF and noise 

temperature TRF, a mixer with an RF-to-IF conversion loss factor LM and noise temperature TM 

, and an IF amplifier with gain GIF and noise temperature TIF.  

The noise effects of later stages can usually be ignored since the overall noise figure is 

dominated by the characteristics of the first few stages.  

The component noise temperatures can be related to noise figures as T = (F − 1)T0.  

The equivalent noise temperature of the receiver can be found as  

𝑇𝑅𝐸𝐶 =  𝑇𝑅𝐹 +
𝑇𝑀

𝐺𝑅𝐹
+

𝑇𝐼𝐹𝐿𝑀

𝐺𝑅𝐹
           -------------- (1) 

The transmission line connecting the antenna to the receiver has a loss LT , and is at a physical 

temperature Tp. So, its equivalent noise temperature is  

𝑇𝑇𝐿 = (𝐿𝑇 − 1)𝑇𝑝      --------- (2) 

We  can find that the noise temperature of the transmission line (TL) and receiver (REC) 

cascade is  

𝑇𝑇𝐿+𝑅𝐸𝐶 = 𝑇𝑇𝐿 + 𝐿𝑇𝑇𝑅𝐸𝐶 = (𝐿𝑇 − 1)𝑇𝑝 + 𝐿𝑇𝑇𝑅𝐸𝐶     --------- (3) 
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This noise temperature is defined at the antenna terminals (the input to the transmission line). 

The entire antenna pattern can collect noise power. If the antenna has a reasonably high gain 

with relatively low sidelobes, we can assume that all noise power comes via the main beam, so 

that the noise temperature of the antenna is given by, 

𝑇𝐴 = 𝜂𝑟𝑎𝑑𝑇𝑏 + (1 − 𝜂𝑟𝑎𝑑)𝑇𝑝  -------- (4) 

where ηrad is the efficiency of the antenna, Tp is its physical temperature, and Tb is the 

equivalent brightness temperature of the background seen by the main beam.  

The noise power at the antenna terminals, which is also the noise power delivered to the 

transmission line, is  

𝑁𝑖 = 𝑘𝐵𝑇𝐴 = 𝑘𝐵[𝜂𝑟𝑎𝑑𝑇𝑏 + (1 − 𝜂𝑟𝑎𝑑)𝑇𝑝]    -----------(5) 

where B is the system bandwidth. If Si is the received power at the antenna terminals, then the 

input SNR at the antenna terminals is Si /Ni .  

The output signal power is, 

𝑆𝑜 =
𝑆𝑖𝐺𝑅𝐹𝐺𝐼𝐹

𝐿𝑇𝐿𝑀
 = 𝑆𝑖𝐺𝑆𝑌𝑆      ------ (6) 

where GSYS has been defined as a system power gain.  

The output noise power is, 

𝑁𝑜 = (𝑁𝑖 + 𝑘𝐵𝑇𝑇𝐿+𝑅𝐸𝐶)𝐺𝑆𝑌𝑆     

𝑁𝑜 = (𝑘𝐵𝑇𝐴 + 𝑘𝐵𝑇𝑇𝐿+𝑅𝐸𝐶)𝐺𝑆𝑌𝑆   

𝑁𝑜 = 𝑘𝐵(𝑇𝐴 + 𝑇𝑇𝐿+𝑅𝐸𝐶)𝐺𝑆𝑌𝑆 = 𝑘𝐵𝑇𝑆𝑌𝑆𝐺𝑆𝑌𝑆    ----------- (7) 

where TSYS has been defined as the overall system noise temperature.  

The output SNR is, 

𝑆𝑜

𝑁𝑜
=

𝑆𝑖

𝑘𝐵𝑇𝑆𝑌𝑆
    --------- (8) 

𝑆𝑜

𝑁𝑜
=

𝑆𝑖

𝑘𝐵[𝜂𝑟𝑎𝑑𝑇𝑏+(1−𝜂𝑟𝑎𝑑)𝑇𝑝+(𝐿𝑇−1)𝑇𝑝+𝐿𝑇𝑇𝑅𝐸𝐶]
  

It may be possible to improve this output SNR by various signal processing techniques.                                                                                                                                                                                                                                                                                                            

 

 

 



Impedance Matching

• Impedance matching, is often an important part of a larger design process
for a microwave component or system.

• The basic idea of impedance matching is illustrated in Figure, which shows
an impedance matching network placed between a load impedance and a
transmission line.

• The matching network is ideally lossless, to avoid unnecessary loss of power,
and is usually designed so that the impedance seen looking into the
matching network is Z0.

• Then reflections will be eliminated on the transmission line to the left of the
matching network, although there will usually be multiple reflections
between the matching network and the load.

• This procedure is sometimes referred to as tuning. Impedance matching or
tuning is important for the following reasons:

1



Impedance Matching

2



Impedance matching or tuning is important for the following reasons: 

1) Maximum power is delivered when the load is matched to the line
(assuming the generator is matched), and power loss in the feed
line is minimized.

2) Impedance matching sensitive receiver components (antenna, low-
noise amplifier, etc.) may improve the signal-to-noise ratio of the
system.

3) Impedance matching in a power distribution network (such as an
antenna array feed network) may reduce amplitude and phase
errors.
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• As long as the load impedance, ZL, has a positive real part, a
matching network can always be found.

• Many choices are available.

Factors that may be important in the selection of a particular matching
network include the following:

• Complexity

• Bandwidth

• Implementation

• Adjustability

4



Complexity

• The simplest design that satisfies the required specifications is
generally preferable.

• A simpler matching network is usually cheaper, smaller, more
reliable, and less lossy than a more complex design.

Bandwidth

• Any type of matching network can ideally give a perfect match (zero
reflection) at a single frequency.

• In many applications, however, it is desirable to match a load over a
band of frequencies.

• There are several ways of doing this, with, of course, a
corresponding increase in complexity.
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Implementation

• Depending on the type of transmission line or waveguide being used,
one type of matching network may be preferable to another.

• For example, tuning stubs are much easier to implement in
waveguide than are multi section quarter-wave transformers.

Adjustability

• In some applications the matching network may require adjustment
to match a variable load impedance.

• It is possible in some types of matching networks.
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Impedance matching techniques:

• MATCHING WITH LUMPED ELEMENTS (L NETWORKS)

• SINGLE-STUB TUNING 

• DOUBLE-STUB TUNING 

• THE QUARTER-WAVE TRANSFORMER 

• TAPERED LINES

7



MATCHING WITH LUMPED ELEMENTS (L NETWORKS)

• The simplest type of matching network is the L-section, which uses two
reactive elements to match an arbitrary load impedance to a transmission line.

• There are two possible configurations for this network, as shown in Figure:
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• If the normalized load impedance, zL = ZL /Z0, is inside the 1 + jx
circle on the Smith chart, then the circuit of Figure (a) should be
used.

• If the normalized load impedance is outside the 1 + jx circle on the
Smith chart, the circuit of Figure (b) should be used.

• The 1 + jx circle is the resistance circle on the impedance Smith
chart for which r = 1.

• In either of the configurations of Figure, the reactive elements may
be either inductors or capacitors, depending on the load impedance.
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• Thus, there are eight distinct possibilities for the matching circuit
for various load impedances.

• If the frequency is low enough and/or the circuit size is small
enough, actual lumped-element capacitors and inductors can be
used. This may be feasible for frequencies up to about 1 GHz or so.

• Modern microwave integrated circuits may be small enough such
that lumped elements can be used at higher frequencies as well.
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Determination of component values of matching network:

consider the circuit of Figure (b)

This circuit is used when zL is outside the 1 + jx circle on the Smith chart, which
implies that RL < Z0.

The admittance seen looking into the matching network, followed by the load
impedance, must be equal to 1/Z0 for an impedance-matched condition:

1

𝑍0
= 𝑗𝐵 +

1

𝑅𝐿 + 𝑗(𝑋 + 𝑋𝐿)
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For circuit in fig (a), component values can be determined as follows:
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SINGLE-STUB TUNING 

• Another popular matching technique uses a single open-circuited
or short-circuited length of transmission line (a stub) connected
either in parallel or in series with the transmission feed line at a
certain distance from the load, as shown in Figure.

• Such a single-stub tuning circuit is often very convenient because
the stub can be fabricated as part of the transmission line media of
the circuit, and lumped elements are avoided.

• Shunt stubs are preferred for microstrip line or stripline, while
series stubs are preferred for slotline or coplanar waveguide.
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• In single-stub tuning the two adjustable parameters are the distance,
d, from the load to the stub position, and the value of susceptance or
reactance provided by the stub.

• For the shunt-stub case, the basic idea is to select d so that the
admittance, Y , seen looking into the line at distance d from the load
is of the form Y0 + j B. Then the stub susceptance is chosen as − j B,
resulting in a matched condition.

• For the series-stub case, the distance d is selected so that the
impedance, Z, seen looking into the line at a distance d from the
load is of the form Z0 + j X. Then the stub reactance is chosen as − j
X, resulting in a matched condition.
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DOUBLE-STUB TUNING

• The single-stub tuner is able to match any load impedance (having a
positive real part) to a transmission line, but suffers from the
disadvantage of requiring a variable length of line between the load
and the stub.

• This may not be a problem for a fixed matching circuit, but would
probably pose some difficulty if an adjustable tuner is desired.

• In this case, the double-stub tuner, which uses two tuning stubs in
fixed positions, can be used. Such tuners are often fabricated in
coaxial line with adjustable stubs connected in shunt to the main
coaxial line.
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THE QUARTER-WAVE TRANSFORMER

• The quarter-wave transformer is a simple and useful circuit for
matching a real load impedance to a transmission line.

• An additional feature of the quarter-wave transformer is that it can
be extended to multi section designs in a methodical manner to
provide broader bandwidth.

• If only a narrow band impedance match is required, a single-section
transformer may suffice.

• One drawback of the quarter-wave transformer is that it can only
match a real load impedance.
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UNIT II 

RADIATION MECHANISMS AND DESIGN ASPECTS 

▪ RADIATION MECHANISMS OF LINEAR WIRE ANTENNAS 

➢ Alternating Current Element (Oscillating Dipole/ Hertzian dipole) 

➢ Half-wave Dipole Antenna∗ 

▪ LOOP ANTENNAS∗ 

▪ APERTURE ANTENNAS 

➢ Wire Antennas Vs Aperture Antennas 

➢ Field Equivalence Principle⋕ 

➢ Horn Antennas∗ 

• Design Principle 

• Rectangular Horn Antennas and Solved Problem 

• Conical Horn Antennas 

• Ridge Horns 

• Septum Horns 

• Corrugated Horns 

• Aperture-Matched Horn 

➢ Slot Antennas 

• Methods of Feeding∗ 

1. Coaxial feed 

2. Offset feed 

3. Boxed-in Slot Antenna 

4. Waveguide-fed Slot 

5. Broadside Array of Slots in a Waveguide 

• Babinet’s Principle⋕ 

• Booker’s Extension of Babinet’s Principle⋕ 

• Impedance of Slot Antenna and Solved Problem⋕ 

▪ REFLECTOR ANTENNAS 

➢ Reflectors of various shapes 

➢ Parabolic Reflector∗ 

• f/d ratio 

• Feed systems for Parabolic Reflectors 

1. Axial/Front Feed 

2. Offset Feed 

3. Cassegrain Feed 

4. Gregorian Feed 
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▪ MICROSTRIP ANTENNAS 

➢ Basic Characteristics of Microstrip antennas∗ 

➢ Feeding Methods∗ 

• Microstrip Line Feed 

• Coaxial Probe Feed 

• Aperture Coupled Feed 

• Proximity Coupled Feed 

➢ Methods of Analysis 

• Transmission-Line Model 

• Cavity Model 

▪ FREQUENCY INDEPENDENT ANTENNAS 

➢ Rumsey’s principle⋕ 

➢ Frequency-Independent Planar Log Spiral Antenna∗ 

➢ Frequency Independent Conical Spiral Antenna 

➢ Log-Periodic Antenna∗ 

• Basic concept 

• Regions of LPDA 

• Radiation pattern 

• Log-periodic behaviour 

• Design equations for LPDA 

• Solved Problem 

 

⋕ Sections requiring additional attention in the perspective of Part-A. 

∗ Sections requiring additional attention in the perspective of Part-B. 
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Far-field due to an Alternating Current Element (Oscillating Dipole/ Hertzian dipole) 

Consider that a time varying current I is flowing in a very short and very thin wire of length dl 

in the z-direction. This current is given by 𝐼𝑑𝑙 cos 𝜔𝑡. Since the current is in the z-direction, 

the current density J will have only a z-component. 

𝐽 = 𝑎𝑧  𝐽𝑧                                                                                             (1) 

The vector magnetic potential A will also have only a z-component.  

𝐴 = 𝑎𝑧 𝐴𝑧                                                                                             (2) 

 

Configuration of filamentary current carrying conductor 

For a line charge density, 

𝐴𝑧 = ∫
𝜇 𝐼 𝑑𝑙

4𝜋𝑅
=

𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
                                                                  (3) 

We know that 𝐴𝑥 = 0, 𝐴𝑦 = 0 𝑎𝑛𝑑 𝐴𝑧 ≠ 0. Since the three-dimensional radiation problem 

needs to be tackled in a spherical co-ordinate system, 𝐴𝑧 needs to be transformed into the 

spherical co-ordinate system. 

[

𝐴𝑟

𝐴𝜃

𝐴𝜙

] = [

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 −𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0
] [

𝐴𝑥

𝐴𝑦

𝐴𝑧

] 

[

𝐴𝑟

𝐴𝜃

𝐴𝜙

] = [

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 −𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0
] [

0
0

𝐴𝑧

] 

𝐴𝑟 = 𝐴𝑧𝑐𝑜𝑠𝜃 ;  𝐴𝜃 = −𝐴𝑧𝑠𝑖𝑛𝜃 ; 𝐴𝜙 = 0                                           (4) 

𝐴𝑟 =
𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
  𝑐𝑜𝑠𝜃                                                                 (5) 

𝐴𝜃 = −
𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
  𝑠𝑖𝑛𝜃                                                              (6) 
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Further from the relation 𝐵 = ∇ × 𝐴, the components of ∇ × 𝐴 are obtained as below. 

𝐵 = ∇ × 𝐴 =
1

𝑟2𝑠𝑖𝑛𝜃 ||

𝑎𝑟   𝑟𝑎𝜃   𝑟𝑠𝑖𝑛𝜃𝑎𝜙

𝜕

𝜕𝑟
 

𝜕

𝜕𝜃
 

𝜕

𝜕𝜙
𝐴𝑟 𝑟𝐴𝜃  𝑟𝑠𝑖𝑛𝜃𝐴𝜙

||                                            

We know that 𝐴𝜙 = 0 and 𝐴𝑟 & 𝐴𝜃 are independent of 𝜙. So 
𝜕

𝜕𝜙
= 0. 

𝐵 = ∇ × 𝐴 =
1

𝑟2𝑠𝑖𝑛𝜃
||

𝑎𝑟   𝑟𝑎𝜃   𝑟𝑠𝑖𝑛𝜃𝑎𝜙

𝜕

𝜕𝑟
 

𝜕

𝜕𝜃
 0

𝐴𝑟 𝑟𝐴𝜃  0

||                                            

𝐵 = ∇ × 𝐴 =
1

𝑟2𝑠𝑖𝑛𝜃
[𝑎𝑟(0) − 𝑟𝑎𝜃(0) + 𝑟𝑠𝑖𝑛𝜃𝑎𝜙 (

𝜕(𝑟𝐴𝜃)

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝜃
)]                                            

  (∇ × 𝐴)𝑟 = 𝐵𝑟 = 𝜇𝐻𝑟 = 0 ⇒ 𝐻𝑟 = 0                                                                      (7) 

  (∇ × 𝐴)𝜃 = 𝐵𝜃 = 𝜇𝐻𝜃 = 0 ⇒  𝐻𝜃 = 0                                                                      (8) 

  (∇ × 𝐴)𝜙 = 𝐵𝜙 = 𝜇𝐻𝜙 =
1

𝑟2𝑠𝑖𝑛𝜃
{𝑟𝑠𝑖𝑛𝜃 (

𝜕(𝑟𝐴𝜃)

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝜃
)}                                    

⇒  𝑯𝝓 =  
𝟏

𝝁𝒓
 [  

𝝏(𝒓𝑨𝜽)

𝝏𝒓
−

𝝏𝑨𝒓

𝝏𝜽
 ]                                                                (𝟗) 

To find 𝑯𝝓 

Using eq(6), 

𝜕(𝑟𝐴𝜃)

𝜕𝑟
=  

𝜕

𝜕𝑟
 (−𝑟 

𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
  𝑠𝑖𝑛𝜃) =  − 

𝜇 𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
  

𝜕

𝜕𝑟
[cos 𝜔(𝑡 − 𝑟 𝑣⁄ )] 

= − 
𝜇 𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
  (

−𝜔

𝑣
)  [−𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )]                                                                            

𝜕(𝑟𝐴𝜃)

𝜕𝑟
= − 

𝜇 𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
  (

𝜔

𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )                                                                            (10) 

Using eq(5) 

𝜕𝐴𝑟

𝜕𝜃
=  

𝜕

𝜕𝜃
 (

𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
  𝑐𝑜𝑠𝜃)   =     

𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
     

𝜕

𝜕𝜃
  [𝑐𝑜𝑠𝜃]      

𝜕𝐴𝑟

𝜕𝜃
=  −  

𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
 𝑠𝑖𝑛𝜃                                                                                          (11) 

Using eq(10) and eq(11) in eq(9), 

 𝑯𝝓 =  
𝟏

𝝁𝒓
 [  

𝝏(𝒓𝑨𝜽)

𝝏𝒓
−

𝝏𝑨𝒓

𝝏𝜽
 ]                                                                           
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𝐻𝜙 =  
1

𝜇𝑟
 [(− 

𝜇 𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
  (

𝜔

𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ ) ) − (−  

𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
 𝑠𝑖𝑛𝜃)]   

𝐻𝜙 =  
1

𝜇𝑟
 [− 

𝜇 𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
  (

𝜔

𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  + 

𝜇 𝐼 𝑑𝑙 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

4𝜋𝑟
 𝑠𝑖𝑛𝜃]   

𝐻𝜙 =  
𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
 [− 

𝜇 

𝜇𝑟
  (

𝜔

𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  +  

𝜇 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝜇𝑟2
 ]   

𝑯𝝓 =  
𝑰 𝒅𝒍𝒔𝒊𝒏𝜽

𝟒𝝅
 [− (

𝝎

𝒓𝒗
)   𝒔𝒊𝒏𝝎(𝒕 − 𝒓 𝒗⁄ ) +  

𝐜𝐨𝐬 𝝎(𝒕 − 𝒓 𝒗⁄ )

𝒓𝟐
 ]                                       (𝟏𝟐) 

Now our objective is to find the electric field components from the magnetic field strength 

relations. 

From Maxwell’s Equation, 

∇ × 𝐻 = 𝐽 +  𝜕𝐷 𝜕𝑡⁄ =  𝜎𝐸 + 𝜀 𝜕𝐸 𝜕𝑡⁄   

The observation point P lies at a distance r away from the antenna. Moreover, the medium 

surrounding the antenna element is air. Hence 𝜎 = 0. 

∇ × 𝐻 = 𝜀 𝜕𝐸 𝜕𝑡⁄   

⇒ 𝐸 =  
1

𝜀
∫(∇ × 𝐻) 𝑑𝑡 

∇ × 𝐻 =
1

𝑟2𝑠𝑖𝑛𝜃 ||

𝑎𝑟   𝑟𝑎𝜃   𝑟𝑠𝑖𝑛𝜃𝑎𝜙

𝜕

𝜕𝑟
 

𝜕

𝜕𝜃
 

𝜕

𝜕𝜙
𝐻𝑟 𝑟𝐻𝜃  𝑟𝑠𝑖𝑛𝜃𝐻𝜙

||                                            

Using eq(7), eq(8) and eq(9), 𝐻𝑟 = 0, 𝐻𝜃 = 0 & 𝐻𝜙  ≠ 0  

From eq(12), we can observe that 𝐻𝜙 is independent of 𝜙 ⇒ 
𝜕𝐻𝜙

𝜕𝜙
= 0 

∇ × 𝐻 =
1

𝑟2𝑠𝑖𝑛𝜃
||

𝑎𝑟   𝑟𝑎𝜃   𝑟𝑠𝑖𝑛𝜃𝑎𝜙

𝜕

𝜕𝑟
 

𝜕

𝜕𝜃
 0

0 0  𝑟𝑠𝑖𝑛𝜃𝐻𝜙

||                                            

∇ × 𝐻 =
1

𝑟2𝑠𝑖𝑛𝜃
[𝑎𝑟

𝜕

𝜕𝜃
(𝑟𝑠𝑖𝑛𝜃𝐻𝜙) − 𝑟𝑎𝜃

𝜕

𝜕𝑟
 (𝑟𝑠𝑖𝑛𝜃𝐻𝜙)] 

(∇ × 𝐻)𝑟 =
1

𝑟2𝑠𝑖𝑛𝜃
[

𝜕

𝜕𝜃
(𝑟𝑠𝑖𝑛𝜃𝐻𝜙)]                                                                                           (13) 

(∇ × 𝐻)𝜃 =
1

𝑟2𝑠𝑖𝑛𝜃
[−𝑟

𝜕

𝜕𝑟
 (𝑟𝑠𝑖𝑛𝜃𝐻𝜙)] =    

−1

𝑟𝑠𝑖𝑛𝜃
[

𝜕

𝜕𝑟
 (𝑟𝑠𝑖𝑛𝜃𝐻𝜙)]                           (14) 

(∇ × 𝐻)𝜙 = 0 ⇒ 𝑬𝝓 = 𝟎                                                                                                                 (𝟏𝟓) 

Now we have to find 𝐸𝑟 and 𝐸𝜃   
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To find 𝑬𝒓 

𝐸𝑟 =  
1

𝜀
∫(∇ × 𝐻)𝑟 𝑑𝑡 

(∇ × 𝐻)𝑟 =
1

𝑟2𝑠𝑖𝑛𝜃
[

𝜕

𝜕𝜃
(𝑟𝑠𝑖𝑛𝜃𝐻𝜙)]                                                     

Using eq(12), 

(∇ × 𝐻)𝑟 =
1

𝑟2𝑠𝑖𝑛𝜃
[

𝜕

𝜕𝜃
 {𝑟𝑠𝑖𝑛𝜃 

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
( − (

𝜔

𝑟𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ ) +  

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
)} ] 

                  =
1

𝑟2𝑠𝑖𝑛𝜃
 
𝑟 𝐼 𝑑𝑙

4𝜋
( − (

𝜔

𝑟𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  +  

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
) [

𝜕

𝜕𝜃
 (𝑠𝑖𝑛2𝜃)  ] 

                  =
1

𝑟𝑠𝑖𝑛𝜃
 
 𝐼 𝑑𝑙

4𝜋
( − (

𝜔

𝑟𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  +  

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
) [2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃  ] 

(∇ × 𝐻)𝑟  =
1

𝑟
 
 𝐼 𝑑𝑙

4𝜋
( − (

𝜔

𝑟𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  +  

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
) (2𝑐𝑜𝑠𝜃) 

(∇ × 𝐻)𝑟  =  
 2 𝐼 𝑑𝑙𝑐𝑜𝑠𝜃

4𝜋
( − (

𝜔

𝑟2𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  +  

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟3
) 

Using above equation, 

𝐸𝑟 =  
1

𝜀
∫(∇ × 𝐻)𝑟 𝑑𝑡 

𝐸𝑟 =  
 2 𝐼 𝑑𝑙𝑐𝑜𝑠𝜃

4𝜋𝜀
∫ [− (

𝜔

𝑟2𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  +  

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟3
]  𝑑𝑡 

     =  
 2 𝐼 𝑑𝑙𝑐𝑜𝑠𝜃

4𝜋𝜀
 [− (

𝜔

𝑟2𝑣
)  

−𝑐𝑜𝑠𝜔(𝑡 − 𝑟 𝑣⁄ )

𝜔
 +  

sin 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝜔𝑟3
] 

𝑬𝒓 =  
 𝟐 𝑰 𝒅𝒍𝒄𝒐𝒔𝜽

𝟒𝝅𝜺
 [  

𝒄𝒐𝒔𝝎(𝒕 − 𝒓 𝒗⁄ )

𝒓𝟐𝒗
  +  

𝐬𝐢𝐧 𝝎(𝒕 − 𝒓 𝒗⁄ )

𝝎𝒓𝟑
]                                                 (𝟏𝟔) 

To find 𝑬𝜽 

𝐸𝜃 =  
1

𝜀
∫(∇ × 𝐻)𝜃 𝑑𝑡 

(∇ × 𝐻)𝜃 =  
−1

𝑟𝑠𝑖𝑛𝜃
[

𝜕

𝜕𝑟
 (𝑟𝑠𝑖𝑛𝜃𝐻𝜙)]                                     

 

Using eq(12), 

(∇ × 𝐻)𝜃 =  
−1

𝑟𝑠𝑖𝑛𝜃
 

𝜕

𝜕𝑟
{ 𝑟𝑠𝑖𝑛𝜃 

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
 [− (

𝜔

𝑟𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  +  

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
 ]}    

Page 9 of 20



 

 

  (∇ × 𝐻)𝜃 =  
−1

𝑟𝑠𝑖𝑛𝜃
  𝑠𝑖𝑛𝜃  

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
 

𝜕

𝜕𝑟
[− (

𝑟𝜔

𝑟𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ )  +  

𝑟 cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
 ]    

                     =    
−𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
 

𝜕

𝜕𝑟
[− (

𝜔

𝑣
)   𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ ) + 

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟
 ]    

=
−𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
[(

𝜔

𝑣
)

2

  𝑐𝑜𝑠𝜔(𝑡 − 𝑟 𝑣⁄ ) +  
−𝑟 (

−𝜔
𝑣 ) 𝑠𝑖𝑛 𝜔(𝑡 − 𝑟 𝑣⁄ ) − cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
 ] 

=
−𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
[(

𝜔

𝑣
)

2

  𝑐𝑜𝑠𝜔(𝑡 − 𝑟 𝑣⁄ ) +
(

𝑟𝜔
𝑣 ) 𝑠𝑖𝑛 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
 −

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
 ] 

(∇ × 𝐻)𝜃 =
−𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
[ 

𝜔2𝑐𝑜𝑠𝜔(𝑡 − 𝑟 𝑣⁄ ) 

𝑣2
+

𝜔𝑠𝑖𝑛 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟𝑣
 −

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
 ] 

𝐸𝜃 =  
1

𝜀
∫(∇ × 𝐻)𝜃 𝑑𝑡 

𝐸𝜃 =  
1

𝜀
∫

−𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
[ 

𝜔2𝑐𝑜𝑠𝜔(𝑡 − 𝑟 𝑣⁄ ) 

𝑣2
+

𝜔𝑠𝑖𝑛 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟𝑣
 −

cos 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2
 ]  𝑑𝑡 

     =  
−𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝜀𝑟
[ 

𝜔2𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ ) 

𝑣2𝜔
−

𝜔𝑐𝑜𝑠 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟𝑣𝜔
 −

sin 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝜔𝑟2
 ] 

     =  
−𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝜀𝑟
[ 

𝜔𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ ) 

𝑣2
−

𝑐𝑜𝑠 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟𝑣
 −

sin 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝜔𝑟2
 ] 

    𝐸𝜃  =  
𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝜀
[−

𝜔𝑠𝑖𝑛𝜔(𝑡 − 𝑟 𝑣⁄ ) 

𝑟𝑣2
+

𝑐𝑜𝑠 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝑟2𝑣
+

sin 𝜔(𝑡 − 𝑟 𝑣⁄ )

𝜔𝑟3
 ] 

Putting 𝑡′ = 𝑡 − 𝑟 𝑣⁄ , 

 𝑬𝜽  =  
𝑰 𝒅𝒍𝒔𝒊𝒏𝜽

𝟒𝝅𝜺
[−

𝝎𝒔𝒊𝒏𝝎𝒕′ 

𝒓𝒗𝟐
+

𝒄𝒐𝒔 𝝎𝒕′

𝒓𝟐𝒗
+

𝐬𝐢𝐧 𝝎𝒕′

𝝎𝒓𝟑
 ]                                                              (𝟏𝟕) 

Putting 𝑡′ = 𝑡 − 𝑟 𝑣⁄ , eq(16) becomes 

𝑬𝒓 =  
 𝟐 𝑰 𝒅𝒍𝒄𝒐𝒔𝜽

𝟒𝝅𝜺
 [  

𝒄𝒐𝒔𝝎𝒕′

𝒓𝟐𝒗
  +  

𝐬𝐢𝐧 𝝎𝒕′

𝝎𝒓𝟑
]                                                                                  (𝟏𝟖) 

Putting 𝑡′ = 𝑡 − 𝑟 𝑣⁄ , eq(12) becomes 

𝑯𝝓 =  
𝑰 𝒅𝒍𝒔𝒊𝒏𝜽

𝟒𝝅
 [− (

𝝎

𝒓𝒗
)   𝒔𝒊𝒏𝝎𝒕′  + 

𝐜𝐨𝐬 𝝎𝒕′

𝒓𝟐
 ]                                                                      (𝟏𝟗) 
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Inference 

The expressions of 𝐸𝑟 , 𝐸𝜃 and 𝐻𝜙involve three types of terms: 

1. The terms inversely proportional to 𝑟3 represent electrostatic field. 

2. The terms inversely proportional to 𝑟2 represent induction or near-field. 

3. The terms which are inversely proportional to r represent radiation field (distant or 

far-field) 

It can be noted the magnitudes of the two bracketed terms in eq(19) will become equal if the 

following relation is satisfied: 

            
𝜔

𝑟𝑣
=   

1

𝑟2
 ⇒  𝑟 =

𝑣

𝜔
=    

𝑓𝜆

2𝜋𝑓
=  

𝜆

2𝜋
    ⟹      𝒓 ≈

𝝀

𝟔
          

Far-field Region or Radiation Zone 

When the distance between the antenna and observation point (r) is very large, the terms  

1
𝑟2⁄  and 1 𝑟3⁄  in eq(17), eq(18) and eq(19) can be neglected in favour of terms of 1 𝑟⁄ . 

𝑬𝜽  ≈  
𝑰 𝒅𝒍𝒔𝒊𝒏𝜽

𝟒𝝅𝜺
[−

𝝎𝒔𝒊𝒏𝝎𝒕′ 

𝒓𝒗𝟐
 ]                                                              (𝟐𝟎) 

𝑬𝒓 ≈  𝟎                                                                                                        (𝟐𝟏) 

𝑯𝝓 ≈  
𝑰 𝒅𝒍𝒔𝒊𝒏𝜽

𝟒𝝅
 [− (

𝝎

𝒓𝒗
)   𝒔𝒊𝒏𝝎𝒕′  ]                                                    (𝟐𝟐) 

The amplitudes in the far-field will be 

|𝐸𝜃| =  
𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋𝜀
(

𝜔 

𝑟𝑣2
 )                                                             (23) 

|𝐻𝜙| =
𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
 (

𝜔

𝑟𝑣
) =

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

4𝜋
 (

2𝜋𝑓

𝑟𝑣
) =

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

2𝑟
  (

𝑓

𝑣
) =  

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

2𝜆𝑟
                        (24) 

Using above two equations, 

|𝐸𝜃|

|𝐻𝜙|
=

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃
4𝜋𝜀 (

𝜔 
𝑟𝑣2 )

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃
4𝜋  (

𝜔
𝑟𝑣)

=
1

𝑣𝜀
  

We know that velocity of a wave in a medium is given by  

𝑣 =
1

√𝜇𝜀
 

|𝐸𝜃|

|𝐻𝜙|
=

1

𝑣𝜀
=

1

(
1

√𝜇𝜀
) 𝜀

=
√𝜇𝜀

𝜀
= √

𝜇

𝜀
= 𝜂 = 120𝜋 (𝑜𝑟) 377Ω                                                 (25) 

Where 𝜂 is the intrinsic impedance of the medium.  
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Power Radiated and Radiation Resistance  

It can be noted that E has no 𝜙 component and H contains only a 𝜙 component. 

𝐸 = 𝐸𝑟𝑎𝑟 + 𝐸𝜃𝑎𝜃 

𝐻 = 𝐻𝜙𝑎𝜙 

The power flow can be given by the poynting vector  

𝑆 =  
1

2
 𝑅𝑒 (𝐸 × 𝐻∗) =

1

2
 𝑅𝑒 {(𝐸𝑟𝑎𝑟 + 𝐸𝜃𝑎𝜃) ×  𝑎𝜙 𝐻𝜙

∗ } =
1

2
 𝑅𝑒 {−𝑎𝜃𝐸𝑟𝐻𝜙

∗ + 𝑎𝑟𝐸𝜃𝐻𝜙
∗ } 

The total radiated power is given by  

𝑃𝑟𝑎𝑑 = ∯ 𝑊. 𝑑𝑠 = ∫ ∫ 𝑆.
𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

(𝑎𝑟𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙) 

𝑃𝑟𝑎𝑑 = ∫ ∫
1

2
 𝑅𝑒 {−𝑎𝜃𝐸𝑟𝐻𝜙

∗ + 𝑎𝑟𝐸𝜃𝐻𝜙
∗ }.

𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

(𝑎𝑟𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙) 

          = ∫ ∫
1

2
 𝑅𝑒 {𝐸𝜃𝐻𝜙

∗ }
𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 =  
1

2
∫ ∫ |𝐸𝜃||𝐻𝜙

∗ | 
𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 

Since 
|𝐸𝜃|

|𝐻𝜙|
⁄ = 𝜂 ⟹  |𝐸𝜃| = 𝜂|𝐻𝜙| 

𝑃𝑟𝑎𝑑 =  
1

2
∫ ∫ 𝜂 |𝐻𝜙| |𝐻𝜙

∗ | 
𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 

  =  
1

2
∫ ∫ 𝜂 |𝐻𝜙| 2 

𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 

          =  
1

2
∫ ∫ 𝜂 (

𝐼 𝑑𝑙𝑠𝑖𝑛𝜃

2𝜆𝑟
)

2𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 

          =  
1

2
∫ ∫ 𝜂 

𝐼2𝑑𝑙2𝑠𝑖𝑛2𝜃

4𝜆2𝑟2
 

𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙  

          =  
𝜂

2
 
𝐼2𝑑𝑙2

4𝜆2
∫ ∫ 𝑠𝑖𝑛3𝜃

𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0

 𝑑𝜃 𝑑𝜙                      

          =  
𝜂

2
 
𝐼2

4
 (

𝑑𝑙

𝜆
)

2

 ∫ 𝑑𝜙
𝜙=2𝜋

𝜙=0

 ∫ 𝑠𝑖𝑛3𝜃 𝑑𝜃          
𝜃=𝜋

𝜃=0

    

          =  
𝜂

2
 
𝐼2

4
 (

𝑑𝑙

𝜆
)

2

 (2𝜋) ∫ 𝑠𝑖𝑛3𝜃 𝑑𝜃             
𝜃=𝜋

𝜃=0
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     𝑃𝑟𝑎𝑑      =  
𝜂

2
 
𝐼2

4
 (

𝑑𝑙

𝜆
)

2

 (2𝜋) ∫ 𝑠𝑖𝑛3𝜃 𝑑𝜃             
𝜃=𝜋

𝜃=0

 

 

Using the following identity, above equation can be re-written as 

𝑠𝑖𝑛3𝜃 =  
3𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛3𝜃

4
 

     𝑃𝑟𝑎𝑑      =  
𝜂

2
 
𝐼2

4
 (

𝑑𝑙

𝜆
)

2

 (2𝜋) ∫ (
3𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛3𝜃

4
)  𝑑𝜃      

       

𝜃=𝜋

𝜃=0

 

   =  
𝜂

2
 
𝐼2

4
 (

𝑑𝑙

𝜆
)

2  (2𝜋)

4
 [−3𝑐𝑜𝑠𝜃 +

𝑐𝑜𝑠3𝜃

3
]

0

𝜋

 

  =  
𝜂

2
 
𝐼2

4
 (

𝑑𝑙

𝜆
)

2  (2𝜋)

4
 [3 −

1

3
+ 3 −

1

3
]         

  =  
𝜂

2
 
𝐼2

4
 (

𝑑𝑙

𝜆
)

2  (2𝜋)

4
 [

16

3
]                                   

    𝑷𝒓𝒂𝒅  =   𝜼
𝝅

𝟑
𝑰𝟐 (

𝒅𝒍

𝝀
)

𝟐

                                                     

Assuming the antenna is lossless, the power radiated by the dipole will be equal to the power 

delivered to the dipole. 

𝑃𝑟𝑎𝑑 = 𝑃𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 

    𝜂
𝜋

3
𝐼2 (

𝑑𝑙

𝜆
)

2

=  𝐼𝑟𝑚𝑠
2 𝑅𝑟                       

We know that  

𝐼𝑟𝑚𝑠 =
𝐼

√2
 

    𝜂
𝜋

3
𝐼2 (

𝑑𝑙

𝜆
)

2

= (
𝐼

√2
)

2

 𝑅𝑟                       

    120𝜋 
𝜋

3
𝐼2 (

𝑑𝑙

𝜆
)

2

=
𝐼2

2
 𝑅𝑟                       

    𝑹𝒓 = 𝟖𝟎 𝝅𝟐 (
𝒅𝒍

𝝀
)

𝟐

= 𝟕𝟗𝟎 (
𝒅𝒍

𝝀
)

𝟐
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Directivity 

𝐷 =
4𝜋

∫ ∫ 𝑃𝑛(𝜃, 𝜙) 𝑑Ω
                                  

𝐷 =
4𝜋

∫ ∫ 𝑃𝑛(𝜃, 𝜙)
𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0
𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙

  

𝐷 =
4𝜋

∫ ∫ (𝑠𝑖𝑛2𝜃)
𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0
𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙

 

=  
4𝜋

∫ ∫ 𝑠𝑖𝑛3𝜃=𝜋

𝜃=0

𝜙=2𝜋

𝜙=0
𝜃 𝑑𝜃 𝑑𝜙

 

=  
4𝜋

∫ 𝑑𝜙
𝜙=2𝜋

𝜙=0
 ∫ 𝑠𝑖𝑛3𝜃 𝑑𝜃          

𝜃=𝜋

𝜃=0

 

=  
4𝜋

∫ 𝑑𝜙
𝜙=2𝜋

𝜙=0
 ∫ 𝑠𝑖𝑛3𝜃 𝑑𝜃          

𝜃=𝜋

𝜃=0

 

=
4𝜋

(2𝜋) ∫ 𝑠𝑖𝑛3𝜃 𝑑𝜃             
𝜃=𝜋

𝜃=0

         

𝑫   =
𝟒𝝅

(𝟐𝝅) (
𝟒
𝟑

)
 =

𝟑

𝟐
= 𝟏. 𝟓                                 
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EC8701

ANTENNAS AND MICROWAVE 
ENGINEERING

Course Instructor: M.Lingeshwaran M.E.,(Ph.D.)



UNIT II
RADIATION MECHANISMS AND DESIGN ASPECTS

Design considerations and applications

▪ Radiation Mechanisms of Linear Wire and Loop antennas

▪ Aperture antennas

▪ Reflector antennas

▪ Microstrip antennas

▪ Frequency independent antennas

2



Loop Antenna

▪ Let us assume a loop antenna of radius 𝑎 which is large enough i.e., the

circumference is almost equal to one wavelength.

▪ The center of the large loop is at the origin of the spherical co-ordinate system.

▪ It is assumed that the current in the loop is uniform and in-phase.

▪ The far-field components can be derived from vector magnetic potential which is a

function of current distribution over the loop.

▪ As shown in the following figure, we assume two small current carrying elements

( or short dipoles) located diametrically opposite on the loop.

▪ If these dipoles are too short and makes an angle of 𝑑𝜙 at the center of the loop

then the length of each short dipole is given as 𝑎 𝑑𝜙.

▪ As the loop is lying in the 𝑥𝑦-plane only (current is confined to the loop) , hence,

the vector magnetic potential will have only 𝜙 component 𝐴𝜙 and other

components are zero 𝐴𝑟 = 𝐴𝜃 = 0 .

3



Loop Antenna

Loop in spherical co-ordinate system

4



Loop Antenna

▪ The observation point P is at distance 𝑟 from origin, hence, the infinitesimal

component of the vector magnetic potential in 𝜙 direction due to diametrically

opposite short dipoles is given as

𝑑𝐴𝜙 =
𝜇 𝑑𝑀

4𝜋𝑟
where 𝑑𝑀 is the current moment produced by short dipoles of length 𝑎 𝑑𝜙

▪ In 𝑥𝑧-plane or 𝜙 = 0° 𝑝𝑙𝑎𝑛𝑒 , the 𝜙 component of retarded current moment due

to one short dipole is defined as

𝑑𝑀1 = 𝐼 𝑎 𝑑𝜙 𝑐𝑜𝑠𝜙

where 𝐼 = 𝐼0 𝑒
𝑗𝜔 𝑡− Τ𝑟 𝑐 and 𝐼0 is the peak current on the loop.

5



Loop Antenna

Cross section of the loop in 𝑥𝑧-plane

6



Loop Antenna

▪ The resultant current moment due to two short dipoles is

𝑑𝑀 = 2 𝑗 𝐼 𝑎 𝑑𝜙 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛
𝜓

2

where 𝜓 = 2𝛽𝑎 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 and 𝛽 =
2𝜋

𝜆

▪ By substituting the value of 𝜓 in above expression, the resultant current moment

comes out as

𝑑𝑀 = 2 𝑗 𝐼 𝑎 𝑐𝑜𝑠𝜙 sin 𝛽𝑎 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑑𝜙

▪ This expression can be substituted in 𝑑𝐴𝜙,

𝑑𝐴𝜙 =
𝜇 𝑑𝑀

4𝜋𝑟
=
𝜇 2 𝑗 𝐼 𝑎 𝑐𝑜𝑠𝜙 sin 𝛽𝑎 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑑𝜙

4𝜋𝑟

𝑑𝐴𝜙 =
𝑗𝜇 𝐼 𝑎

2𝜋𝑟
𝑐𝑜𝑠𝜙 sin 𝛽𝑎 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑑𝜙

7



Loop Antenna

▪ Integrating 𝑑𝐴𝜙 yields,

𝐴𝜙 =
𝑗𝜇 𝐼 𝑎

2𝜋𝑟
න
𝜙=0

𝜙=𝜋

sin 𝛽𝑎 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜙 𝑑𝜙

⇒ 𝑨𝝓 =
𝒋𝝁 𝑰 𝒂

𝟐𝒓
𝑱𝟏 𝜷𝒂 𝒔𝒊𝒏𝜽

where 𝐽1 is a Bessel function of the first order and of argument 𝛽𝑎 𝑠𝑖𝑛𝜃 .

▪ Note

𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃 =
1

𝜋
න
𝜙=0

𝜙=𝜋

sin 𝛽𝑎 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜙 𝑑𝜙

8



Loop Antenna

▪ The far electric field of the loop has only 𝜙 component given by

𝐸𝜙 = −𝑗𝜔𝐴𝜙

▪ Substituting 𝐴𝜙 in above expression yields

𝐸𝜙 = −𝑗𝜔𝐴𝜙 = −𝑗𝜔
𝑗𝜇 𝐼 𝑎

2𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃 ⟹ 𝑬𝝓 =

𝝁𝝎 𝑰 𝒂

𝟐𝒓
𝑱𝟏 𝜷𝒂 𝒔𝒊𝒏𝜽

Since 𝜔 = 2𝜋𝑓, 𝑐 = 𝑓𝜆 and 𝛽 =
2𝜋

𝜆

𝐸𝜙 =
𝜇 2𝜋𝑓 𝐼 𝑎

2𝑟
×

𝜆

𝜆
× 𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃 =

2𝜋

𝜆
× 𝑓𝜆 × 𝜇 ×

𝐼 𝑎

2𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃

𝐸𝜙 = 𝛽𝑐𝜇
𝐼 𝑎

2𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃

9



Loop Antenna

𝐸𝜙 = 𝛽𝑐𝜇
𝐼 𝑎

2𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃

▪ Substituting the values of 𝑐 and 𝜇 in above expression yields

𝐸𝜙 = 3 × 108 × 4𝜋 × 10−7
𝛽𝑎 𝐼

2𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃

𝑬𝝓 =
𝟔𝟎𝝅𝜷𝒂 𝑰

𝒓
𝑱𝟏 𝜷𝒂 𝒔𝒊𝒏𝜽

▪ This expression gives the instantaneous electric field at a distance 𝑟 from a loop of

any radius 𝑎.

▪ The magnetic field 𝐻𝜃 at a large distance is related to 𝐸𝜙 by intrinsic impedance

of the free space 𝜂. Thus,

𝑯𝜽 =
𝑬𝝓

𝜼
=

𝑬𝝓

𝟏𝟐𝟎 𝝅
=
𝜷𝒂 𝑰

𝟐𝒓
𝑱𝟏 𝜷𝒂 𝒔𝒊𝒏𝜽

10



Far-field Patterns of Circular Loop Antenna

▪ The far-field patterns for a loop of any size is given by

𝐸𝜙 =
60𝜋𝛽𝑎 𝐼

𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃 and  𝐻𝜃 =

𝛽𝑎 𝐼

2𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃

▪ For a loop of a given size, 𝛽𝑎 is constant and shape of the far-field pattern is given

as a function of 𝜃 by

𝑱𝟏 𝑪𝝀 𝐬𝐢𝐧𝜽

where 𝐶𝜆 is the circumference of the loop in wavelengths. That is,

𝐶𝜆 =
2𝜋

𝜆
𝑎 = 𝛽𝑎

▪ 0 ≤ sin 𝜃 ≤ 1

▪ When 𝜃 = 90°, the relative field is 𝐽1 𝐶𝜆
▪ As 𝜃 decreases to zero, the values of the relative field vary in accordance with the

𝐽1 curve from 𝐽1 𝐶𝜆 to zero.

11



Far-field Patterns of Circular Loop Antenna

Rectified first-order Bessel curve for patterns of loops

12



Far-field Patterns of Circular Loop Antenna

Far-field patterns of loops of 0.1, 1, 1.5, 5 𝑎𝑛𝑑 8𝜆 diameter. 

Uniform in-phase current is assumed on the loops

13



Small Loop as a Special Case

▪ The far-field patterns for a loop of any size is given by

𝐸𝜙 =
60𝜋𝛽𝑎 𝐼

𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃

𝐻𝜃 =
𝛽𝑎 𝐼

2𝑟
𝐽1 𝛽𝑎 𝑠𝑖𝑛𝜃

▪ For small arguments of the first-order Bessel function, the following approximate

relation can be used

𝐽1 𝑥 =
𝑥

2

▪ When 𝑥 =
1

3
, the approximation is about 1% in error.

▪ The relation becomes exact as 𝑥 approaches to zero.

14



Small Loop as a Special Case

▪ Thus, if the perimeter of the loop is Τ𝜆 3 or less 𝐶𝜆 <
𝜆

3
, far-field equations for a

small loop is

𝐸𝜙 =
60𝜋𝛽𝑎 𝐼

𝑟

𝛽𝑎 𝑠𝑖𝑛𝜃

2
=
60𝜋𝛽2𝑎2 𝐼

2𝑟
𝑠𝑖𝑛𝜃 =

60
2𝜋
𝜆

2

𝜋𝑎2 𝐼

2𝑟
𝑠𝑖𝑛𝜃

𝑬𝝓 =
𝟏𝟐𝟎 𝝅𝟐 𝑰 𝐬𝐢𝐧𝜽

𝒓

𝑨

𝝀𝟐

𝐻𝜃 =
𝛽𝑎 𝐼

2𝑟

𝛽𝑎 𝑠𝑖𝑛𝜃

2
=
𝛽2𝑎2 𝐼 𝑠𝑖𝑛𝜃

4𝑟
=

2𝜋
𝜆

2

𝑎2 𝐼 𝑠𝑖𝑛𝜃

4𝑟

𝑯𝜽 =
𝝅 𝑰 𝒔𝒊𝒏𝜽

𝒓

𝑨

𝝀𝟐
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Aperture Antennas

▪ The term aperture refers to an opening in an otherwise closed surface.

▪ As applied to antennas, aperture antennas represent a class of antennas that are

generally analyzed considering the antenna as an opening in a surface.

▪ Typical antennas that fall in this category are the slot, horn, reflector, and lens

antennas.

▪ Aperture antennas are most common at microwave frequencies.

▪ Aperture antennas are very practical for space applications, because they can be

flush mounted on the surface of the spacecraft or aircraft.

▪ Their opening can be covered with a dielectric material to protect them from

environmental conditions. This type of mounting does not disturb the aerodynamic

profile of the craft, which in high-speed applications is critical.

16



Wire Antennas Vs Aperture Antennas

▪ The radiation characteristics of wire antennas can be determined once the current

distribution on the wire is known.

▪ For many configurations, however, the current distribution is not known exactly

and only physical intuition or experimental measurements can provide a

reasonable approximation to it. This is even more evident in aperture antennas

(slits, slots, waveguides, horns, reflectors, lenses).

▪ The central idea used in the analysis of aperture type antennas is the conversion of

the original antenna geometry into an equivalent geometry which can be looked at

as radiation through an aperture in a closed surface.

▪ In case of wire antennas, the fields of an antenna are expressed in terms of the

vector potential which, in turn, is an integral over the current distribution on the

antenna surface. The major difficulty in computing the fields of an aperture type

antenna is the integration over a complex surface of the antenna.

17



Wire Antennas Vs Aperture Antennas

▪ This issue is somewhat simplified by converting the antenna into an aperture

problem, using the field equivalence principle.

▪ The aperture geometry is conveniently chosen as some regular surface so that the

integration can be carried out with much less effort.

▪ All that is needed is the knowledge of the tangential E or H fields in the aperture

to compute the far-fields of the antenna

▪ Obviously, some approximation is involved in determining the tangential fields in

the aperture, but in general, the computed far-fields are fairly accurate for all

practical purposes, if sufficient care is taken in arriving at this approximation.

18



Field Equivalence Principle

▪ The field equivalence is a principle by which actual sources, such as an antenna

and transmitter, are replaced by equivalent sources. The fictitious sources are said

to be equivalent within a region because they produce the same fields within that

region.

▪ FEP is based on

▪ Huygens’ Principle

▪ Uniqueness Theorem

19



Huygens’ Principle

▪ “Each point on a primary wavefront can be considered to be a new source of a

secondary spherical wave and that a secondary wave front can be constructed as

the envelope of these secondary waves”.

20



Uniqueness Theorem

▪ “A field in a lossy region is uniquely specified by the sources within the region

plus the tangential components of the electric field over the boundary, or the

tangential components of the magnetic field over the boundary, or the former over

part of the boundary and the latter over the rest of the boundary”.

▪ “For a given set of sources and boundary conditions in a lossy medium, the

solution to Maxwell’s equations is unique”.

▪ Consider a source-free volume V in an isotropic homogeneous medium bounded

by a surface S, and let (E1, H1) be the fields inside it produced by a set of sources

external to the volume.

▪ Now, let (E2, H2) be another possible set of fields in the volume V.

▪ It can be shown that if either the tangential E or the tangential H is the same on the

surface S for the two sets of solutions, the fields are identical everywhere in the

volume. This is known as the uniqueness theorem.
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Uniqueness Theorem

▪ It is important to note that it is sufficient to equate either the tangential E or the

tangential H on S for the solution to be unique.

▪ In other words, in a source-free region the fields are completely determined by the

tangential E or the tangential H on the bounding surface.

▪ Although the uniqueness theorem is derived for a dissipative medium, one can

prove the theorem for a lossless medium by a limiting process as loss tends to

zero.
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Love’s Field Equivalence Principle

▪ Consider a set of current sources in a homogeneous isotropic medium producing

electromagnetic fields E and H everywhere.

▪ Enclose all the sources by a closed surface S, separating the entire space into two

parts, volume V1containing the sources and the volume V2 being source-free.

▪ Let the surface S be chosen such that it is also source-free.

▪ Let ෝ𝒏 be a unit normal to the surface drawn from V1 into V2.

Fields and Sources
23



Love’s Field Equivalence Principle

▪ According to the field equivalence principle, the fields in V2 due to the sources in

volume V1 can also be generated by an equivalent set of virtual sources on surface

S, given by

𝐉𝐒 = ෝ𝐧 × 𝐇

𝐌𝐒 = −ෝ𝐧 × 𝐄 = 𝐄 × ෝ𝐧

where E and H are the fields on the surface S produced by the original set of sources 

in volume V1. 

▪ Further the set of virtual sources produce null fields everywhere in V1. 

▪ Here MS represents the magnetic surface current density and JS the electric surface 

current density.
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Love’s Field Equivalence Principle

Three forms of the field equivalence principle: (a) surface current densities JS and

MS on the surface S, (b) surface current density MS alone on the surface S, which

is a conducting surface, and (c) surface current density JS alone on the surface S,

which is a magnetic conductor surface

25



Love’s Field Equivalence Principle

▪ The proof of this principle makes use of the uniqueness theorem.

▪ Consider a situation where the fields in volume V2 are the same as before, (E,H),

but we delete all the sources in V1 and assume the fields to be identically zero

everywhere in V1.

▪ At the boundary surface, S, the fields are discontinuous and, hence, cannot be

supported unless we introduce sources on the discontinuity surface.

▪ Specifically, we introduce surface current sheets on S, such that 𝐉𝐒 = ෝ𝐧 × 𝐇 and

𝐌𝐒 = 𝐄 × ෝ𝐧, so that the boundary conditions are satisfied.

▪ Since the tangential E and H satisfy the boundary conditions, it is a solution of

Maxwell’s equations, and from the uniqueness theorem, it is the only solution.

▪ Thus, the original sources in V1 and the new set of surface current sources

produce the same fields (E,H) in the volume V2. Therefore, these are equivalent

problems as far as the fields in the volume V2 are concerned.
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Love’s Field Equivalence Principle

▪ Let us assume that the medium inside S is replaced by a perfect electric conductor

(σ =∞). The introduction of the perfect electric conductor shorts out electric

current density (JS=0) and there exists only a magnetic current density MS as

shown in Fig.(b).

▪ Let us assume that instead of placing a perfect electric conductor within S, we

introduce a perfect magnetic conductor which will short out the magnetic current

density and reduce the equivalent problem to that shown in Fig.(c).
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Horn Antennas

▪ Microwave Antenna

▪ Used as a feed element for large radio astronomy, satellite tracking and

communication dishes.

▪ Used as a feed for reflectors and lenses

▪ It is a common element of phased arrays and serves as a universal standard for

calibration and gain measurements of other high-gain antennas.

▪ Its widespread applicability stems from its

▪ simplicity in construction

▪ ease of excitation

▪ versatility

▪ large gain and preferred overall performance.
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Horn Antennas

▪ A horn antenna may be regarded as a flared-out (or opened-out) waveguide.

▪ Function of the horn is to produce a uniform phase front with a large aperture than

that of the waveguide and hence greater directivity.

▪ Jagadis Chandra Bose constructed a pyramidal horn in 1897.

▪ Horn antennas (Rectangular/Circular) are energized from waveguides.

▪ To minimize the reflections of the guided wave, the transition region or horn

between the waveguide at the throat and free space at the aperture could be given a

gradual exponential taper as in fig(a) or fig(e).

▪ Assuming that the rectangular waveguide is energized with a TE10 mode wave

electric field (E in the y direction), the horn in fig(b) is flared out in a plane

perpendicular to E. This is the plane of the magnetic field H. Hence, this type of

horn is called a sectoral horn flared in H plane or simply an H-plane sectoral

horn.
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Rectangular Horn Antennas
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Horn Antennas

▪ The horn in fig(c) is flared out in the plane of the electric field E, and hence is

called an E-plane sectoral horn.

▪ A rectangular horn with flare in both planes, as in fig(d), is called a pyramidal

horn.

▪ Horn shown in fig(f) is a conical type.

▪ When excited with a circular waveguide carrying a TE11 mode wave, the electric

field distribution at the aperture is as shown by the arrows.

▪ Horn in fig(g) and fig(h) are biconical types.

▪ TEM Biconical antenna is excited in the TEM mode by a vertical radiator.

▪ TE01 Biconical antenna is excited in the TE01 mode by a small horizontal loop

antenna

▪ Biconical horns are non-directional in the horizontal plane.
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Circular Horn Antennas
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Horn Antennas – Design Principle

▪ The principle of equality of path length(Fermat’s principle) is applicable to the

horn design but with a different emphasis.

▪ Instead of requiring a constant phase across the horn mouth, the requirement is

relaxed to a one where the phase may deviate, but by less than a specified amount

𝛿, equal to the path length difference between a ray traveling along the side and

along the axis of the horn.

▪ Design parameters:

▪ E-plane : 𝜃𝐸 is the flare angle (deg) and 𝑎𝐸 is the aperture dimension (m)

▪ H-pane: 𝜃𝐻 is the flare angle (deg) and 𝑎𝐻 is the aperture dimension (m)

▪ L = Horn Length (m)

▪ 𝛿 = path length difference (m)
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Horn Antennas – Design Principle

(a) Pyramidal horn antenna

(b) Cross section with dimensions

used in analysis
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Horn Antennas – Design Equations

▪ From the figure,

cos
𝜃

2
=

𝐿

𝐿 + 𝛿

sin
𝜃

2
=

Τ𝑎 2

𝐿 + 𝛿
=

𝑎

2 𝐿 + 𝛿

tan
𝜃

2
=

𝑎
2 𝐿 + 𝛿

𝐿
𝐿 + 𝛿

=
𝑎

2𝐿

▪ From the geometry, we have also that

𝐿 + 𝛿 2 = 𝐿2 +
𝑎

2

2

⇒ 𝐿2 + 𝛿2 + 2𝐿𝛿 = 𝐿2 +
𝑎2

4
⇒ 𝛿2 + 2𝐿𝛿 =

𝑎2

4

⇒ 𝑳 =
𝒂𝟐

𝟖𝜹
𝛿 ≪ 𝐿 𝑎𝑛𝑑 𝜽 = 𝟐 𝐭𝐚𝐧−𝟏

𝒂

𝟐𝑳
= 𝟐 𝐜𝐨𝐬−𝟏

𝑳

𝑳 + 𝜹
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Horn Antennas – Design Constraints

▪ In E-plane of horn, 𝛿 ≤ 0.25𝜆

▪ In H-plane, 𝛿 ≈ 0.4𝜆 (Since E goes to zero at the horn edges)

▪ To obtain as uniform an aperture distribution as possible, a very long horn with a

small flare angle is required. Practically, the horn should be as short as possible.

▪ If 𝛿 is a sufficiently small fraction of a wavelength, the field has nearly uniform

phase over the entire aperture.

▪ For a constant length L, the directivity of the horn increases (beamwidth

decreases) as the aperture 𝑎 and flare angle 𝜃 are increased.

▪ However, if the aperture and flare angle become so large that 𝛿 ≅ 180°, the field

at the edge of the aperture is in phase opposition to the field on the axis.

▪ For all but very large flare angles, the ratio Τ𝐿 𝐿 + 𝛿 is so nearly unity that the

effect of the additional path length 𝛿 on the distribution of the field magnitude can

be neglected.

36



Horn Antennas – Design Constraints

▪ However, when 𝛿 = 180°, the phase reversal at the edges of the aperture reduces

the directivity (increases sidelobes).

▪ It follows that the maximum directivity occurs at the largest flare angle for which

𝛿 does not exceed a certain value 𝛿0 .

▪ Thus, the optimum horn dimensions can be related by

𝛿0 =
𝐿

cos Τ𝜃 2
− 𝐿 = 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝛿

𝐿 =
𝛿0 𝑐𝑜𝑠 Τ𝜃 2

1 − 𝑐𝑜𝑠 Τ𝜃 2
= 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑙𝑒𝑛𝑔𝑡ℎ
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Rectangular Horn Antennas

▪ Referring to the following figure, the total flare angle in the E plane is 𝜃𝐸 and the

total flare angle in the H plane is 𝜃𝐻. The axial length of the horn from throat to

aperture is 𝐿 and the radial length is 𝑅.
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Rectangular Horn Antennas

Measured E-plane and

H-plane field patterns of

rectangular horns as a

function of flare angle

and horn length
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Rectangular Horn Antennas

▪ Patterns measured by Donald Rhodes are shown in above figure.

▪ In (a), the patterns in the E plane and H plane are compared as a function of R.

Both sets are for a flare angle of 20°. The E-plane patterns have minor lobes

whereas the H-plane patterns have practically none.

▪ In (b), measured patterns for horns with 𝑅 = 8𝜆 are compared as a function of

flare angle. In the upper row E-plane patterns are given as a function of the E-

plane flare angle 𝜃𝐸 and in the lower row H-plane patterns are shown as a function

of the H-plane flare angle 𝜃𝐻.
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Rectangular Horn Antennas

▪ For a flare angle 𝜃𝐸 = 50°, the E-plane pattern is split, whereas for 𝜃𝐻 = 50°, the

H-plane pattern is not.

▪ This is because a given phase shift at the aperture in the E-plane horn has more

effect on the pattern than the same phase shift in the H-plane horn.

▪ In the H-plane horn, the field goes to zero at the edges of the aperture, so the

phase near the edge is relatively less important.

▪ Accordingly, we should expect the value of 𝛿0 for the H plane to be larger than

for the E plane.

▪ From Rhodes's experimental patterns, optimum dimensions were selected for both

E- and H-plane flare as a function of flare angle and horn length L.

▪ These optimum dimensions are indicated by the solid lines in the following figure.

The corresponding half-power beam widths and apertures in wavelengths are also

indicated.
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Rectangular Horn Antennas

Experimentally determined optimum dimensions for rectangular horn antennas. Solid curves give relation of flare angle 𝜃𝐸 in

E plane and flare angle 𝜃𝐻 in H plane to horn length. The corresponding half-power beamwidths and apertures in wavelengths

are indicated along the curves. Dashed curves show calculated dimensions for 𝛿0 = 0.25𝜆 and 𝛿0 = 0.4𝜆.
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Rectangular Horn Antennas

▪ The dashed curves show the calculated dimensions for a path length 𝛿0 = 0.25𝜆
and 𝛿0 = 0.4𝜆.

▪ The value of 0.25𝜆 gives a curve close to the experimental curve for E-plane flare,

while the value of 0.4𝜆 gives a curve close to the experimental one for H-plane

flare over a considerable range of horn length.

▪ Thus, the tolerance in path length is greater for H-plane flare than for E-plane

flare, as indicated above.
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Rectangular Horn Antennas

▪ The directivity (or gain, assuming no loss) of a horn antenna can be expressed in

terms of its effective aperture. Thus,

𝐷 =
4𝜋𝐴𝑒
𝜆2

=
4𝜋𝜀𝑎𝑝𝐴𝑝

𝜆2

where 𝐴𝑒 = effective aperture, 𝑚2; 𝐴𝑝 = physical aperture, 𝑚2; 𝜀𝑎𝑝 = aperture

efficiency; 𝜆 = wavelength, 𝑚

▪ For a rectangular horn 𝐴𝑝 = 𝑎𝐸 𝑎𝐻 and for a conical horn 𝐴𝑝 = 𝜋𝑟2, where

r = aperture radius. It is assumed that 𝑎𝐸, 𝑎𝐻 or 𝑟 are all at least 1𝜆.

▪ Taking 𝜀𝑎𝑝 ≃ 0.6,

𝐷 ≃
7.5 𝐴𝑝
𝜆2

⇒ 𝐷 ≃ 10 log
7.5 𝐴𝑝
𝜆2

𝑑𝐵𝑖 ⇒ 𝑫 ≃ 𝟏𝟎 𝐥𝐨𝐠 𝟕. 𝟓𝒂𝑬𝝀 𝒂𝑯𝝀

where 𝑎𝐸𝜆 = E-plane aperture in 𝜆 ; 𝑎𝐻𝜆 = H-plane aperture in 𝜆
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Rectangular Horn Antennas - Example

(a) Determine the length 𝐿, H-plane aperture and flare angles 𝜃𝐸 and 𝜃𝐻 (in the E

and H planes respectively) of a pyramidal horn for which the E-plane aperture

𝑎𝐸 = 10𝜆. The horn is fed by a rectangular waveguide with 𝑇𝐸10 mode. Let

𝛿 = 0.2𝜆 in the E-plane and 0.375𝜆 in the H-plane. (b) What are the beamwidths?

(c) What is the directivity?

Solution:

Taking 𝛿 = 0.2𝜆 in the E-plane, the required horn length

𝐿 =
𝑎2

8𝛿
=

10𝜆 2

8 × 0.2𝜆
=
100𝜆

1.6
= 62.5𝜆

Flare angle in E-plane is

𝜃𝐸 = 2 tan−1
𝑎𝐸
2𝐿

= 2 tan−1
10𝜆

2 × 62.5𝜆
= 2 tan−1

10

125
= 9.1°
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Rectangular Horn Antennas - Example

Taking 𝛿 = 0.375 𝜆 in the H-plane, the flare angle in the H-plane

𝜃𝐻 = 2 cos−1
𝐿

𝐿 + 𝛿
= 2cos−1

62.5𝜆

62.5𝜆 + 0.375𝜆
= 2 cos−1

62.5

62.875
= 12.52°

H-plane aperture is

𝑎𝐻 = 2𝐿 tan
𝜃𝐻
2
= 2 × 62.5𝜆 tan

12.52°

2
= 125𝜆 × 0.109 = 13.7𝜆

𝐻𝑃𝐵𝑊 𝐸 − 𝑃𝑙𝑎𝑛𝑒 =
56°

𝑎𝐸𝜆
=
56°

10
= 5.6°

𝐻𝑃𝐵𝑊 𝐻 − 𝑃𝑙𝑎𝑛𝑒 =
67°

𝑎𝐻𝜆
=

67°

13.7
= 4.9°

𝐷 ≃ 10 log 7.5 𝑎𝐸𝜆 𝑎𝐻𝜆 = 10 log 7.5 × 10 × 13.7 = 30.1 𝑑𝐵𝑖
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Conical Horn Antennas

▪ Conical Horn can be directly excited from a circular waveguide.

▪ Dimensions can be determined from the following expressions by taking

𝛿0 = 0.32𝜆,

𝛿0 =
𝐿

cos Τ𝜃 2
− 𝐿 = 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝛿

𝐿 =
𝛿0 𝑐𝑜𝑠 Τ𝜃 2

1 − 𝑐𝑜𝑠 Τ𝜃 2
= 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑙𝑒𝑛𝑔𝑡ℎ

▪ For optimum conical horns,

𝐻𝑃𝐵𝑊 𝐸 − 𝑝𝑙𝑎𝑛𝑒 = Τ60 𝑎𝐸𝜆
𝐻𝑃𝐵𝑊 𝐻 − 𝑝𝑙𝑎𝑛𝑒 = Τ70 𝑎𝐻𝜆

These values are about 6% more than the values for a rectangular horn. 
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Conical Horn Antennas

▪ Biconical horns have patterns that are non-directional in the horizontal plane (axis 

of horns vertical).

▪ These horns may be regarded as modified pyramidal horns with a 360° flare angle 

in the horizontal plane.

▪ The optimum vertical-plane flare angle is about the same as for a sectoral horn of 

the same cross section excited in the same mode.
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Ridge Horns

▪ A central ridge loads a waveguide and increases its useful bandwidth by lowering

the cutoff frequency of the dominant mode.

▪ Rectangular guides with single and double ridges are shown in the following

figures(a) and (b)

▪ A very thin ridge or fin is also effective in producing the loading of a central ridge.

It may consist of a metal-clad ceramic sheet which facilitates the installation of

shunt circuit elements as suggested in figure(c).
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Ridge Horns

▪ Cutoff frequency can be lowered by placing dielectric material in the waveguide,

but this does not increase the bandwidth and it may increase losses.

▪ By continuing a double-ridge structure from a waveguide into a pyramidal horn as

suggested in the following figure, the useful bandwidth of the horn can be

increased manyfold.

Double-ridge or Vivaldi horn with coaxial feed. 

The view at (a) is a cross section at the feed point.
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Septum Horns

▪ Although the electric field in the H plane of a pyramidal horn tends to zero at the

edges, resulting in a tapered distribution and reduced sidelobes, the electric field in

the E plane may be close to uniform in amplitude to the edges, resulting in

significant sidelobes.

▪ By introducing septum plates bonded to the horn walls, a stepped-amplitude

distribution can be achieved in the E plane with a reduction in E-plane sidelobes.

▪ Typically, the first sidelobes of a uniform amplitude distribution are down about

13 dB.

▪ A cosine field distribution is approximated with a 1:2:1 stepped amplitude

distribution with apertures also in the ratio 1:2:1 as suggested in the following

figure. To achieve this distribution, the septums must be appropriately space at the

throat of the horn.
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Septum Horns

Two-septum horn with 1:2:1 stepped amplitude distribution in field intensity at 

mouth of horn
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Corrugated Horns

▪ Corrugated horns can provide reduced edge diffraction, improved pattern

symmetry and reduced cross-polarization (less E field in the H plane).

▪ Corrugations on the horn walls acting as Τ𝜆 4 chokes are used to reduce E to very

low values at all horn edges for all polarizations. These prevent waves from

diffracting around the edges of the horn (or surface currents flowing around the

edge and over the outside).

▪ The reactance at open end of corrugation is

𝑋 ≃ 377 tan
2𝜋𝑑

𝜆
Ω

▪ Corrugations with depth 𝑑 = Τ𝜆 2 act as conducting surface 𝑋 = 0

▪ Corrugations with depth 𝑑 = Τ𝜆 4 present a high impedance 𝑋 = ∞
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Corrugated Horn

Cross section of circular waveguide-fed corrugated horn with corrugated transition
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Aperture-Matched Horn

▪ By attaching a smooth curved (or

rolled) surface section to the

outside of the aperture edge of a

horn, a significant improvement in

the pattern, impedance and

bandwidth characteristics can be

achieved.

▪ This arrangement is an attractive

alternative to a corrugated horn.

▪ The shape of the rolled edge is not

critical but its radius of curvature

should be at least Τ𝜆 4.
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Slot Antennas

▪ Slot antennas are useful in many applications, especially where low-profile or

flush installations are required as, for example, on high-speed aircraft.

▪ The antenna shown in above figure, consisting of two resonant Τ𝜆 4 stubs

connected to a 2-wire transmission line, forms an inefficient radiator. The long

wires are closely spaced (𝑤 ≪ 𝜆) and carry currents of opposite phase so that

their fields tend to cancel. The end wires carry currents in the same phase, but they

are too short to radiate efficiently. Hence, enormous currents may be required to

radiate appreciable amounts of power.
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Slot Antennas

▪ The antenna shown in the following figure is a very efficient radiator. In this

arrangement a Τ𝜆 2 slot is cut in a flat metal sheet. Although the width of the slot is

small (𝑤 ≪ 𝜆), the currents are not confined to the edges of the slot but spread out

over the sheet. This is a simple type of slot antenna. Radiation occurs equally from

both sides of the sheet. If the slot is horizontal, as shown, the radiation normal to

the sheet is vertically polarized.
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Slot Antennas - Methods of Feeding 

▪ A slot antenna may be conveniently energized with a coaxial transmission line as

in the following figure(a).

▪ The outer conductor of the cable is bonded to the metal sheet. Since the terminal

resistance at the center of a resonant Τ𝜆 2 slot in a large sheet is about 500Ω and

the characteristic impedance of coaxial transmission lines is usually much less, an

offset feed as shown in figure(b) may be used to provide a better impedance

match.

▪ For a 50Ω coaxial cable, the distance 𝑠 ≈ Τ𝜆 20.
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Slot Orientation Horizontal Slot 

as shown in figure (c)

Vertical Slot 

as shown in figure (d)

Wave Polarization Vertical Polarization Horizontal Polarization



Slot antennas fed by coaxial transmission lines
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Boxed-in Slot Antenna

▪ A flat sheet with a Τ𝜆 2 slot radiates equally on both sides of the sheet. However, if

the sheet is very large (ideally infinite) and boxed in as shown in the following

figure, radiation occurs only from one side.

▪ If the depth 𝑑 of the box is appropriate 𝑑~ Τ𝜆 4 𝑓𝑜𝑟 𝑎 𝑡ℎ𝑖𝑛 𝑠𝑙𝑜𝑡 , no appreciable

shunt susceptance appears across the terminals. With such a zero susceptance box,

the terminal impedance of the resonant Τ𝜆 2 slot is nonreactive and approximately

twice its value without the box, or about 1000Ω.
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Boxed-in Slot Antenna as Flush Radiator

▪ The boxed-in slot antenna might be applied even at relatively long wavelengths by

using the ground as the flat conducting sheet and excavating a trench Τ𝜆 2 long by

Τ𝜆 4 deep as shown in the following figure.

▪ Radiation is maximum in all directions at right angles to the slot and is zero along

the ground in the directions of the ends of the slot. The radiation along the ground

is vertically polarized.
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Waveguide-fed Slot

▪ Radiation from only one side of a large flat sheet may also be achieved by a slot

fed with a waveguide as shown in the figure. With the transmission in the guide in

the TE10 mode, the direction of the electric field E is as shown.

▪ The width L of the guide must be more than Τ𝜆 2 to transmit energy, but it should

be less than 1𝜆 to suppress higher-order transmission modes. With the horizontal

slot, the radiation normal to sheet is vertically polarized.
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Broadside Array of Slots in a Waveguide

▪ An array of slots may be cut in the waveguide as shown in the figure so as to

produce a directional radiation pattern.

▪ By cutting inclined slots as shown at intervals of Τ𝜆𝑔 2 (where 𝜆𝑔 is the guide

wavelength), the slots are energized in phase and produce a directional pattern

with maximum radiation broadside to the guide.

▪ If the guide is horizontal and E inside the guide is vertical, the radiated field is

horizontally polarized.
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Slot Antenna Vs Complementary Dipole

A  Τ𝜆 2 slot in an infinite sheet (a) and a complementary Τ𝜆 2 dipole antenna (b) 
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Slot Antenna Vs Complementary Dipole

Radiation-field patterns of slot in an infinite sheet (a) and of complementary dipole 

antenna (b). The patterns have the same shape but with E and H interchanged.
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Babinet’s Principle

▪ Babinet’s principle in optics states that when the field behind a screen with an

opening is added to the field of a complementary structure, the sum is equal to the

field when there is no screen .

▪ Let a source and 2 imaginary planes, plane of screens A and plane of observation

B, be arranged as in the following figure.

▪ Case 1: Let a perfectly absorbing screen be placed in plane A. Then in plane B

there is a region of shadow as indicated. Let the field behind this screen be some

function 𝑓1 of 𝑥, 𝑦 and 𝑧. Thus,

𝐹𝑆 = 𝑓1 𝑥, 𝑦, 𝑧

▪ Case 2: Let the first screen be replaced by its complementary screen and the field

behind it be given by

𝐹𝐶𝑆 = 𝑓2 𝑥, 𝑦, 𝑧
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Babinet’s Principle

▪ Case 3: With no screen, the field is

𝐹0 = 𝑓3 𝑥, 𝑦, 𝑧

▪ Babinet’s principle asserts that at the same point 𝑥, 𝑦, 𝑧,

𝐹𝑆 + 𝐹𝐶𝑆 = 𝐹0

67



Babinet’s Principle
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Babinet’s Principle
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Babinet’s Principle
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Booker’s Extension of Babinet’s Principle

▪ Babinet’s principle has been extended and generalized by Booker to take into

account the vector nature of the electromagnetic field.

▪ In this extension, it is assumed that the screen is plane, perfectly conducting and

infinitesimally thin.

▪ Furthermore, if one screen is perfectly conducting 𝜎 = ∞ , the complementary

screen must have infinite permeability 𝜇 = ∞ .

▪ Thus, if one screen is a perfect conductor of electricity, the complementary screen

is a perfect conductor of magnetism.

▪ No infinitely permeable material exists, but the equivalent effect may be obtained

by making both the original and complementary screens of perfectly conducting

material and interchanging electric and magnetic quantities everywhere.
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Booker’s Extension of Babinet’s Principle

▪ Case 1: The dipole is horizontal and the original screen is an infinite, perfectly

conducting, plane, infinitesimally thin sheet with a vertically cut out slot as

indicated. At a point P behind the screen the field is 𝐸1.

▪ Case 2: The original screen is replaced by the complementary screen consisting of

a perfectly conducting, plane, infinitesimally thin strip of the same dimensions as

the slot in the original screen. In addition, the dipole source is turned vertical so as

to interchange E and H. At the same point P behind the screen the field is 𝐸2.

▪ Case 2 Alternative: The dipole source is horizontal and the strip is also turned

horizontal.

▪ Case 3: No screen is present and the field at point P is 𝐸0. Then, by Babinet’s

principle,

𝐸1 + 𝐸2 = 𝐸0 ⟹
𝐸1
𝐸0

+
𝐸2
𝐸0

= 1
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Booker’s Extension of Babinet’s Principle
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Impedance of Slot Antenna

▪ Knowing the impedance 𝑍𝑑 of the complementary dipole antenna, the impedance

𝑍𝑠 of the slot antenna can be determined.

▪ Consider the slot antenna and the complementary dipole antenna as shown in the

following figure. The terminals of each antenna are indicated by FF, and it is

assumed that they are separated by an infinitesimal distance. It is assumed that the

dipole and slot are cut from an infinitesimally thin, plane, perfectly conducting

sheet.

▪ Let a generator be connected to the terminals of the slot antenna. The driving point

impedance 𝑍𝑠 at the terminals is the ratio of the terminal voltage 𝑉𝑠 to the terminal

current 𝐼𝑠.

▪ Let 𝐸𝑠 and 𝐻𝑠 be the electric and magnetic fields of the slot at any point P.
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Impedance of Slot Antenna

Slot antenna (a) and complementary dipole antenna (b)
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Impedance of Slot Antenna

▪ The voltage 𝑉𝑠 at the terminals FF of the slot is given by the line integral of 𝐸𝑠
over the path 𝐶1 as 𝐶1 approaches zero. Thus,

𝑉𝑠 = lim
𝐶1→ 0

න
𝐶1

𝐸𝑠 ∙ 𝑑𝑙 (1)

where 𝑑𝑙 = infinitesimal vector element of length 𝑑𝑙 along the contour or path 𝐶1.

▪ The current 𝐼𝑠 at the terminals of the slot is

𝐼𝑠 = 2 lim
𝐶2→ 0

න
𝐶2

𝐻𝑠 ∙ 𝑑𝑙 (2)

▪ The path 𝐶2 is just outside the metal sheet and parallel to its surface. The factor 2

enters because only
1

2
of the closed line integral is taken, the line integral over the

other side of the sheet being equal by symmetry.
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Impedance of Slot Antenna

▪ Let a generator be connected to the terminals of the dipole. The driving-point

impedance 𝑍𝑑 at the terminals is the ratio of the terminal voltage 𝑉𝑑 to the

terminal current 𝐼𝑑. Let 𝐸𝑑 and 𝐻𝑑 be the electric and magnetic fields of the dipole

at any point P. Then the voltage at the dipole terminals is

𝑉𝑑 = lim
𝐶2→ 0

න
𝐶2

𝐸𝑑 ∙ 𝑑𝑙 (3)

▪ Current at the dipole terminals is

𝐼𝑑 = 2 lim
𝐶1→ 0

න
𝐶1

𝐻𝑑 ∙ 𝑑𝑙 (4)
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Impedance of Slot Antenna

▪ However,

lim
𝐶2→ 0

න
𝐶2

𝐸𝑑 ∙ 𝑑𝑙 = 𝑍0 lim
𝐶2→ 0

න
𝐶2

𝐻𝑠 ∙ 𝑑𝑙 5

lim
𝐶1→ 0

න
𝐶1

𝐻𝑑 ∙ 𝑑𝑙 =
1

𝑍0
lim
𝐶1→ 0

න
𝐶1

𝐸𝑠 ∙ 𝑑𝑙 (6)

where 𝑍0 is the intrinsic impedance of the surrounding medium.

▪ Substituting (3) and (2) in (5) yields,

𝑉𝑑 =
𝑍0
2
𝐼𝑠 7

▪ Substituting (4) and (1) in (6) gives,

𝑉𝑠 =
𝑍0
2
𝐼𝑑 8
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Impedance of Slot Antenna

▪ Multiplying (7) and (8) we have

𝑉𝑠
𝐼𝑠

𝑉𝑑
𝐼𝑑

=
𝑍0
2

4
9

⟹ 𝑍𝑠 𝑍𝑑 =
𝑍0
2

4
⟹ 𝑍𝑠 =

𝑍0
2

4𝑍𝑑

▪ For free space 𝑍0 = 376.7 Ω,

𝑍𝑠 =
𝑍0
2

4𝑍𝑑
=
35476

𝑍𝑑
Ω
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Impedance of Slot Antenna-Example Calculation

The impedance of an infinitesimally thin Τ𝜆 2 antenna 𝐿 = 0.5𝜆, Τ𝐿 𝐷 = ∞ is

73 + 𝑗42.5 Ω. Calculate the terminal impedance of an infinitesimally thin Τ𝜆 2 slot

antenna.

Given:

𝑍𝑑 = 73 + 𝑗 42.5 Ω

Solution:

𝑍𝑠 =
𝑍0
2

4𝑍𝑑
=
35476

𝑍𝑑
=

35476

73 + 𝑗 42.5
= 363 − 𝑗 211 Ω
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Reflector Antennas

▪ Reflectors are widely used to modify the radiation pattern of a radiating element.

▪ For example, the backward radiation from an antenna may be eliminated with a

plane sheet reflector of large enough dimensions.

▪ In the more general case, a beam of pre-determined characteristics may be

produced by means of a large, suitably shaped, and illuminated reflector surface.

▪ Reflector antenna is basically a combination of feed and reflecting surface to

achieve high directivity at microwave frequencies.

▪ The feed is known as primary antenna and it can be slot, dipole or horn antenna.

▪ The reflector is also known as secondary antenna and it is a metallic plate which

may be curved or flat and used to direct the incident energy in a specific direction

to achieve high directivity

▪ Applications: Radars, radio astronomy, microwave communication, and satellite

tracking
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Reflectors of various shapes
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Reflectors of various shapes

▪ Figure(a) has a large, flat sheet reflector near a linear dipole antenna to reduce the

backward radiation.

▪ With small spacings between the antenna and sheet, this arrangement also yields a

substantial gain in the forward radiation.

▪ The desirable properties of the sheet reflector may be largely preserved with the

reflector reduced in size as in figure(b) and even in the limiting case of figure(c).

▪ Here the sheet has degenerated into a thin reflector element.

▪ Whereas the properties of the large sheet are relatively insensitive to small

frequency changes, the thin reflector element is highly sensitive to frequency

changes.
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Reflectors of various shapes
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Reflectors of various shapes

▪ With two flat sheets intersecting at an angle 𝛼 (< 180°) as in figure(d), a sharper

radiation pattern than from a flat sheet reflector (𝛼 = 180°) can be obtained. This

arrangement, called an active corner reflector antenna, is most practical where

apertures of 1 or 2𝜆 are of convenient size.

▪ A corner reflector without an exciting antenna can be used as a passive reflector

or target or radar waves. In this application the aperture may be many

wavelengths, and the corner angle is always 90°. Reflectors with this angle have

the property that an incident wave is reflected back toward its source as in

figure(e), the corner acting as a retroreflector.

▪ Parabolic reflectors can be used to provide highly directional antennas as shown in

figure(f). The parabola reflects the waves originating from a source at the focus

into a parallel beam, the parabola transforming the curved wave front from the

feed antenna at the focus into a plane wave front.
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Reflectors of various shapes
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Reflectors of various shapes

▪ Many other shapes of reflectors can be employed for special applications.

▪ For instance, with an antenna at one focus, the elliptical reflector as shown in

figure (g) produces a diverging beam with all reflected waves passing through the

second focus of the ellipse.

▪ Examples of reflectors of other shapes are the hyperbolic and the circular

reflectors as shown in figure(h) and (i).
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Parabolic Reflector

▪ The surface generated by the revolution of a parabola around its axis is called a

paraboloid or a parabola of revolution.

▪ If an isotropic source is placed at the focus of a paraboloidal reflector as in

figure(a), the portion A of the source radiation that is intercepted by the paraboloid

is reflected as a plane wave of circular cross section provided that the reflector

surface deviates from a true parabolic surface by no more than a small fraction of

a wavelength.

▪ If the distance L between the focus and vertex of the paraboloid is an even number

of Τ𝜆 4, the direct radiation in the axial direction from the source will be in

opposite phase and will tend to cancel the central region of the reflected wave.

▪ However, if 𝐿 = Τ𝑛𝜆 4 where 𝑛 = 1,3,5,…, the direct radiation in the axial

direction from the source will be in the same phase and will tend to reinforce the

central region of the reflected wave.
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Parabolic Reflector

Parabolic reflectors of different focal lengths (L) with sources of different patterns
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Parabolic Reflector

▪ Direct radiation from the source can be eliminated by means of a directional

source or primary antenna as in figure(b) and (c).

▪ A primary antenna with the idealized hemispherical pattern is shown in figure(b)

results in a wave of uniform phase over the reflector aperture. However, the

amplitude is tapered as indicated.

▪ To obtain a more uniform aperture field distribution or illumination, it is necessary

to make 𝜃1 small, as suggested in figure(c), by increasing the focal length L while

keeping the reflector diameter D constant.

▪ A typical pattern for a directional source as indicated by the dashed curve at (c)

(left) gives a more tapered aperture distribution as shown by the dashed curve at

(c) (right). The greater amount of taper with resultant reduction in edge

illumination may be desirable in order to reduce the minor-lobe level, this being

achieved, however, at some sacrifice in directivity.
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Parabolic Reflector

Parabolic reflectors of different focal lengths (L) with sources of different patterns
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Parabolic Reflector

Parabolic reflectors of different focal lengths (L) with sources of different patterns
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Parabolic Reflector-(f/d) ratio

▪ The surface of a paraboloidal reflector is formed by rotating a parabola about its

axis. Its surface must be a paraboloid of revolution so that rays emanating from

the focus of the reflector are transformed into plane waves. The design is based on

optical techniques, and it does not take into account any deformations

(diffractions) from the rim of the reflector.

▪ Referring to the following figure and choosing a plane perpendicular to the axis of

the reflector through the focus, it follows that

𝑂𝑃 + 𝑃𝑄 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 2𝑓 1

▪ From the figure,

𝑂𝑃 = 𝑟′

cos 𝜃′ =
𝑃𝑄

𝑂𝑃
=
𝑃𝑄

𝑟′
⟹ 𝑃𝑄 = 𝑟′ cos 𝜃′
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Parabolic Reflector-(f/d) ratio

Two-dimensional configuration of a paraboloidal reflector
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Parabolic Reflector-(f/d) ratio

▪ Eq.(1) can be written as

𝑟′ 1 + cos 𝜃′ = 2𝑓 ⟹ 𝑟′ =
2𝑓

1 + cos 𝜃′
= 𝑓 𝑠𝑒𝑐2

𝜃′

2
𝜃 ≤ 𝜃0

▪ Since a paraboloid is a parabola of revolution (about its axis), above equation is

also the equation of a paraboloid in terms of the spherical coordinates 𝑟′, 𝜃′, 𝜙′.

Because of its rotational symmetry, there are no variations with respect to 𝜙′.

Above equation can also be written in terms of the rectangular coordinates

𝑥′, 𝑦′, 𝑧′. That is,

𝑟′ + 𝑟′ cos 𝜃′ = 𝑥′ 2 + 𝑦′ 2 + 𝑧′ 2 + 𝑧′ = 2𝑓

⟹ 𝑥′ 2 + 𝑦′ 2 + 𝑧′ 2 = 2𝑓 − 𝑧′
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Parabolic Reflector-(f/d) ratio

⟹ 𝑥′ 2 + 𝑦′ 2 + 𝑧′ 2 = 2𝑓 − 𝑧′

▪ Squaring on both sides,

𝑥′ 2 + 𝑦′ 2 + 𝑧′ 2 = 2𝑓 − 𝑧′ 2

⟹ 𝑥′ 2 + 𝑦′ 2 + 𝑧′ 2 = 4𝑓2 + 𝑧′ 2 − 4𝑓𝑧′

𝑥′ 2 + 𝑦′ 2 = 4𝑓 𝑓 − 𝑧′ with 𝑥′ 2 + 𝑦′ 2 ≤ Τ𝑑 2 2

▪ Another expression that is usually very prominent in the analysis of reflectors is 

that relating the subtended angle 𝜃0 to the Τ𝑓 𝑑 ratio. From the geometry of 

previous figure,

𝜃0 = tan−1
Τ𝑑 2

𝑧0

where 𝑧0 is the distance along the axis of the reflector from the focal point to the 

edge of the rim.
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Parabolic Reflector-(f/d) ratio

▪ We can similarly have for point R 𝑥0, 𝑦0, 𝑧0 as

𝑥0
2 + 𝑦0

2 = 4𝑓 𝑓 − 𝑧0 ⟹
𝑥0

2 + 𝑦0
2

4𝑓
= 𝑓 − 𝑧0

𝑧0 = 𝑓 −
𝑥0

2 + 𝑦0
2

4𝑓
⟹ 𝑧0 = 𝑓 −

Τ𝑑 2 2

4𝑓
⟹ 𝑧0 = 𝑓 −

𝑑2

16𝑓

▪ Substituting above expression in 𝜃0 = tan−1
Τ𝑑 2

𝑧0
reduces it to

𝜃0 = tan−1
Τ𝑑 2

𝑧0
= tan−1

𝑑
2

𝑓 −
𝑑2

16𝑓

⟹ 𝜃0 = tan−1
𝑑
2

𝑑2

𝑓
𝑓
𝑑

2

−
1
16 97



Parabolic Reflector-(f/d) ratio

𝜃0 = tan−1
𝑑
2

𝑑2

𝑓
𝑓
𝑑

2

−
1
16

⟹ 𝜃0= tan−1

1
2

𝑓
𝑑

𝑓
𝑑

2

−
1
16

▪ It can also be shown that another form of above expression is

𝑓 =
𝑑

4
cot

𝜃0
2
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Feed systems for Parabolic Reflectors

Axial/Front Feed:

▪ The overall radiation characteristics (antenna pattern, antenna efficiency,

polarization discrimination, etc.) of a reflector can be improved if the structural

configuration of its surface is upgraded.

▪ It has been shown by geometrical optics that if a beam of parallel rays is incident

upon a reflector whose geometrical shape is a parabola, the radiation will converge

(focus) at a spot which is known as the focal point.

▪ In the same manner, if a point source is placed at the focal point, the rays

reflected by a parabolic reflector will emerge as a parallel beam.

▪ This is one form of the principle of reciprocity, and it is demonstrated

geometrically in the following figure.

▪ The symmetrical point on the parabolic surface is known as the vertex. Rays that

emerge in a parallel formation are usually said to be collimated.

99



Feed systems for Parabolic Reflectors

Axial/Front Feed:
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Feed systems for Parabolic Reflectors

Axial/Front Feed:

▪ In practice, collimation is often used to describe the highly directional

characteristics of an antenna even though the emanating rays are not exactly

parallel. Since the transmitter (receiver) is placed at the focal point of the parabola,

the configuration is usually known as front fed.

▪ A Τ𝜆 2 antenna with small ground plane is shown in figure(a) and a small horn

antenna in figure(b).

▪ Drawbacks: The Presence of primary antenna in the path of reflected wave has 2

principal disadvantages:

▪ Waves reflected from the parabola back to the primary antenna produce

interaction and mismatching.

▪ Primary antenna acts as an obstruction, blocking out the central portion of the

aperture and increasing the minor lobes. (Aperture Blockage).
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Feed systems for Parabolic Reflectors

Axial/Front Feed:
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Feed systems for Parabolic Reflectors

Axial/Front Feed:

▪ The disadvantage of the front-fed arrangement is that the transmission line from

the feed must usually be long enough to reach the transmitting or the receiving

equipment, which is usually placed behind or below the reflector.

▪ This may necessitate the use of long transmission lines whose losses may not be

tolerable in many applications, especially in low-noise receiving systems.

▪ In some applications, the transmitting or receiving equipment is placed at the focal

point to avoid the need for long transmission lines.

▪ However, in some of these applications, especially for transmission that may

require large amplifiers and for low-noise receiving systems where cooling and

weatherproofing may be necessary, the equipment may be too heavy and bulky

and will provide undesirable blockage.
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Feed systems for Parabolic Reflectors

Offset Feed:

▪ To eliminate some of the deficiencies of the symmetric configurations, offset-

parabolic reflector designs have been developed for single- and dual-reflector

systems.

▪ Offset-reflector designs reduce aperture blocking and VSWR. In addition, they

lead to the use of larger f/d ratios while maintaining acceptable structural rigidity,

which provide an opportunity for improved feed pattern shaping and better

suppression of cross-polarized radiation emanating from the feed.

▪ However, offset-reflector configurations generate cross-polarized antenna

radiation when illuminated by a linearly polarized primary feed. Circularly

polarized feeds eliminate depolarization, but they lead to squinting of the main

beam from boresight.

▪ In addition, the structural asymmetry of the system is usually considered a major

drawback
104



Feed systems for Parabolic Reflectors

Offset Feed:
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Feed systems for Parabolic Reflectors

Cassegrain Feed:

▪ Another arrangement that avoids placing the feed (transmitter and/or receiver) at

the focal point is that shown in the following figure, and it is known as the

Cassegrain feed.

▪ Through geometrical optics, Cassegrain, a famous astronomer (hence its name),

showed that incident parallel rays can be focused to a point by utilizing two

reflectors.

▪ To accomplish this, the main (primary) reflector must be a parabola, the secondary

reflector (subreflector) a hyperbola, and the feed placed along the axis of the

parabola usually at or near the vertex.

▪ Cassegrain used this scheme to construct optical telescopes, and then its design

was copied for use in radio frequency systems.
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Feed systems for Parabolic Reflectors

Cassegrain Feed:
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Feed systems for Parabolic Reflectors

Cassegrain Feed:

▪ For this arrangement, the rays that emanate from the feed illuminate the

subreflector and are reflected by it in the direction of the primary reflector, as if

they originated at the focal point of the parabola (primary reflector).

▪ The rays are then reflected by the primary reflector and are converted to parallel

rays, provided the primary reflector is a parabola and the subreflector is a

hyperbola.

▪ Diffractions occur at the edges of the subreflector and primary reflector, and they

must be taken into account to accurately predict the overall system pattern,

especially in regions of low intensity.

▪ Even in regions of high intensity, diffractions must be included if an accurate

formation of the fine ripple structure of the pattern is desired.
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Feed systems for Parabolic Reflectors

Cassegrain Feed:

▪ With the Cassegrain-feed arrangement, the transmitting and/or receiving

equipment can be placed behind the primary reflector. This scheme makes the

system relatively more accessible for servicing and adjustments.

▪ In general, the Cassegrain arrangement provides a variety of benefits, such as the

▪ ability to place the feed in a convenient location

▪ reduction of spillover and minor lobe radiation

▪ ability to obtain an equivalent focal length much greater than the physical

length

▪ capability for scanning and/or broadening of the beam by moving one of the

reflecting surfaces
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Feed systems for Parabolic Reflectors

Cassegrain Feed:

▪ To achieve good radiation characteristics, the subreflector or subdish must be

several, at least a few, wavelengths in diameter.

▪ However, its presence introduces shadowing which is the principal limitation of its

use as a microwave antenna.

▪ The shadowing can significantly degrade the gain of the system, unless the main

reflector is several wavelengths in diameter.

▪ Therefore the Cassegrain is usually attractive for applications that require gains of

40 dB or greater.
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Feed systems for Parabolic Reflectors

Gregorian Feed:

▪ One of the other reflector arrangements is the classical Gregorian design as shown

in the following figure, where the main reflector is a parabola while the

subreflector is a concave ellipse.

▪ The focal point is between the main reflector and subreflector. Its equivalent

parabola is shown dashed in the figure.

▪ When the overall size and the feed beamwidth of the classical Gregorian are

identical to those of the classical Cassegrain, the Gregorian requires a shorter focal

length for the main dish.
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Feed systems for Parabolic Reflectors

Gregorian Feed:
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Microstrip antennas

▪ In high-performance aircraft, spacecraft, satellite, and missile applications, where

size, weight, cost, performance, ease of installation, and aerodynamic profile are

constraints, low-profile antennas may be required.

▪ Microstrip antennas are

➢low profile

➢conformable to planar and nonplanar surfaces

➢simple and inexpensive to manufacture using modern printed-circuit

technology

➢mechanically robust when mounted on rigid surfaces

➢compatible with MMIC designs and

➢when the particular patch shape and mode are selected, they are very versatile

in terms of resonant frequency, polarization, pattern, and impedance.
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Microstrip antennas

▪ Major operational disadvantages of microstrip antennas are their

➢low efficiency

➢low power

➢High Q (sometimes in excess of 100)

➢poor polarization purity

➢poor scan performance

➢spurious feed radiation and

➢very narrow frequency bandwidth, which is typically only a fraction of a

percent or at most a few percent.
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Basic Characteristics of Microstrip antennas

▪ Microstrip antennas received considerable attention starting in the 1970s, although

the idea of a microstrip antenna can be traced to 1953 and a patent in 1955.

▪ Microstrip antennas, as shown in Figure (a), consist of a very thin (t ≪ λ0, where

λ0 is the free-space wavelength) metallic strip (patch) placed a small fraction of a

wavelength (h ≪ λ0, usually 0.003λ0 ≤ h ≤ 0.05λ0) above a ground plane.

▪ The microstrip patch is designed so its pattern maximum is normal to the patch

(broadside radiator). This is accomplished by properly choosing the mode (field

configuration) of excitation beneath the patch.

▪ End-fire radiation can also be accomplished by judicious mode selection.

▪ For a rectangular patch, the length L of the element is usually λ0/3 < L < λ0/2.

▪ The strip(patch) and the ground plane are separated by a dielectric sheet (referred

to as the substrate), as shown in Figure (a).
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Basic Characteristics of Microstrip antennas
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Basic Characteristics of Microstrip antennas

▪ There are numerous substrates that can be used for the design of microstrip

antennas, and their dielectric constants are usually in the range of 2.2 ≤ 𝜀r ≤ 12.

▪ The ones that are most desirable for good antenna performance are thick

substrates whose dielectric constant is in the lower end of the range because they

provide better efficiency, larger bandwidth, loosely bound fields for radiation into

space, but at the expense of larger element size.

▪ Thin substrates with higher dielectric constants are desirable for microwave

circuitry because they require tightly bound fields to minimize undesired radiation

and coupling, and lead to smaller element sizes; however, because of their greater

losses, they are less efficient and have relatively smaller bandwidths.

▪ Since microstrip antennas are often integrated with other microwave circuitry, a

compromise has to be reached between good antenna performance and circuit

design.
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Basic Characteristics of Microstrip antennas

Typical Substrates and Their Parameters
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Basic Characteristics of Microstrip antennas

▪ Often microstrip antennas are also referred to as patch antennas.

▪ The radiating elements and the feed lines are usually photoetched on the dielectric

substrate.

▪ The radiating patch may be square, rectangular, thin strip (dipole), circular,

elliptical, triangular, or any other configuration.

▪ Square, rectangular, dipole (strip), and circular are the most common because of

ease of analysis and fabrication, and their attractive radiation characteristics,

especially low cross-polarization radiation.

▪ Microstrip dipoles are attractive because they inherently possess a large

bandwidth and occupy less space, which makes them attractive for arrays.

▪ Linear and circular polarizations can be achieved with either single elements or

arrays of microstrip antennas.
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Basic Characteristics of Microstrip antennas

Representative shapes of microstrip patch elements
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Microstrip antennas - Feeding Methods

▪ The four most popular configurations that can be used to feed microstrip antennas

are

➢Microstrip Line Feed

➢Coaxial Probe Feed

➢Aperture Coupled Feed

➢Proximity Coupled Feed
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Microstrip antennas - Feeding Methods

1. Microstrip Line Feed:
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Microstrip antennas - Feeding Methods

1. Microstrip Line Feed:

▪ Easy to fabricate

▪ Simple to match by controlling inset position

▪ Simple to model

▪ As substrate thickness increases, surface waves and spurious feed radiation

increase

▪ This limits the bandwidth
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Microstrip antennas - Feeding Methods

2. Coaxial line feed:
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Microstrip antennas - Feeding Methods

2. Coaxial line feed:

▪ Inner conductor attached to the patch and outer conductor to ground plane

▪ Easy to fabricate and to match

▪ Low spurious radiation

▪ Narrow bandwidth

▪ Difficult to model, especially for thick substrates
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Microstrip antennas - Feeding Methods

3. Aperture-coupled feed:

126



Microstrip antennas - Feeding Methods

3. Aperture-coupled feed:

▪ Non-contacting feed

▪ Most difficult to fabricate

▪ Narrow bandwidth

▪ Somewhat easier to model

▪ Moderate spurious radiation

▪ Independent optimization of feed mechanism and radiating element possible

▪ Feed line width and slot length used to control matching
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Microstrip antennas - Feeding Methods

4. Proximity-coupled feed:
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Microstrip antennas - Feeding Methods

4. Proximity-coupled feed:

▪ Non-contacting feed

▪ Largest bandwidth

▪ Somewhat easy to model

▪ Low spurious radiation

▪ Fabrication somewhat more difficult

▪ Length of feeding stub and width-to-line ratio of patch can be used to control

matching
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Microstrip antennas - Feeding Methods

Equivalent circuits for typical feeds
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Microstrip antennas - Methods of Analysis

▪ There are many methods of analysis for microstrip antennas. The most popular

models are the transmission-line, cavity and full wave (which include primarily

integral equations/Moment Method).

▪ The transmission-line model is the easiest of all, it gives good physical insight,

but is less accurate and it is more difficult to model coupling.

▪ Compared to the transmission-line model, the cavity model is more accurate but at

the same time more complex. However, it also gives good physical insight and is

rather difficult to model coupling, although it has been used successfully.
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Microstrip antennas - Transmission-Line Model

▪ It was indicated earlier that the transmission-line model is the easiest of all but it

yields the least accurate results and it lacks the versatility. However, it does shed

some physical insight.

▪ Basically the transmission-line model represents the microstrip antenna by two

slots, separated by a low-impedance Zc transmission line of length L.

Fringing Effects:

▪ Because the dimensions of the patch are finite along the length and width, the

fields at the edges of the patch undergo fringing.

▪ This is illustrated along the length in Figures (a,b) for the two radiating slots of the

microstrip antenna.

▪ The same applies along the width.

▪ The amount of fringing is a function of the dimensions of the patch and the height

of the substrate.
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Microstrip antennas - Transmission-Line Model

Fringing Effects:

▪ For the principal E-plane (xy-plane) fringing is a function of the ratio of the length

of the patch L to the height h of the substrate (L/h) and the dielectric constant 𝜀r of

the substrate.

▪ Since for microstrip antennas L/h ≫ 1, fringing is reduced; however, it must be

taken into account because it influences the resonant frequency of the antenna.

The same applies for the width.

▪ For a microstrip line shown in Figure (a), typical electric field lines are shown in

Figure (b).

▪ This is a nonhomogeneous line of two dielectrics; typically the substrate and air.

▪ As can be seen, most of the electric field lines reside in the substrate and parts of

some lines exist in air.
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Microstrip antennas - Transmission-Line Model

Fringing Effects:

▪ As W∕h≫ 1 and 𝜀r≫ 1, the electric field lines concentrate mostly in the substrate.

▪ Fringing in this case makes the microstrip line look wider electrically compared

to its physical dimensions.

▪ Since some of the waves travel in the substrate and some in air, an effective

dielectric constant 𝜀reff is introduced to account for fringing and the wave

propagation in the line.

▪ For a line with air above the substrate, the effective dielectric constant has values

in the range of 1 < 𝜀reff < 𝜀r.

𝜀𝑟𝑒𝑓𝑓 =
𝜀𝑟 + 1

2
+
𝜀𝑟 − 1

2
1 +

12ℎ

𝑊

− Τ1 2
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Microstrip antennas - Transmission-Line Model

Microstrip line and its electric field lines, and effective dielectric constant geometry
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Microstrip antennas - Transmission-Line Model

Physical and effective lengths of rectangular microstrip patch
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Microstrip antennas - Transmission-Line Model

Effective Length, Resonant Frequency, and Effective Width:

▪ Because of the fringing effects, electrically the patch of the microstrip antenna

looks greater than its physical dimensions.

Δ𝐿

ℎ
= 0.412

(𝜀𝑟𝑒𝑓𝑓 + 0.3)(
𝑊
ℎ
+ 0.264)

(𝜀𝑟𝑒𝑓𝑓 − 0.258)(
𝑊
ℎ
+ 0.8)

𝐿𝑒𝑓𝑓 = 𝐿 + 2Δ𝐿

▪ L = λ∕2 for dominant TM010 mode with no fringing.

𝑓𝑟𝑐 010 =
1

2𝐿𝑒𝑓𝑓 𝜀𝑟𝑒𝑓𝑓 𝜇0𝜀0
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Microstrip antennas - Cavity Model

▪ Using the cavity model, a rectangular microstrip antenna can be represented as an

array of two radiating narrow apertures (slots), each of width W and height h,

separated by a distance L.

▪ Excitation establishes charge distribution

▪ This distribution controlled by two mechanisms:

▪ An attractive one between the corresponding opposite charges on the bottom

side of the patch and the ground plane; and

▪ A repulsive one between like charges on the bottom side of the patch

▪ While the attraction tends to keep charge distribution on the bottom of the patch,

the repulsion tends to push some charges from the patch bottom to the top surface,

around the edges.

▪ The consequent movement of charge carriers gives rise to Jb and Jt
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Microstrip antennas - Cavity Model
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Microstrip antennas - Cavity Model

▪ The height-to-width ration generally being very small, attractive mechanism

dominates, thus restricting current flow to bottom surface.

▪ Thus the tangential magnetic field to the edges is insignificant

▪ Consequently, the four side walls can be modeled as PMC which ideally would

not disturb the H-field, and in turn, the E-field beneath the patch.

▪ This model produces good E and H field distributions beneath the patch.

▪ With the assumption of lossless cavity walls and the filling dielectric, the cavity

would not radiate and its input impedance would be purely reactive.

▪ To account for radiation, therefore, a loss mechanism needs to be introduced.

▪ This is done by introducing an effective loss tangent 𝛿𝑒𝑓𝑓.
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Microstrip antennas - Cavity Model

▪ The top and bottom walls are PEC

▪ The four side walls are PMC

▪ Tangential magnetic fields vanish along these four walls

▪ In summary, the cavity method is based on the following physical model:

▪ The electric field is mainly localized in the cylinder of height h between the

patch and the ground plane;

▪ The radiation is the result of leakage from the cylindrical cavity via its lateral

walls (as the cavity ends are perfectly conducting)

141



P a g e  1 | 15 

 

 FREQUENCY INDEPENDENT ANTENNAS 

CONTENTS 

▪ Principle of frequency independent antennas 

➢ Spiral antenna 

➢ Log-Periodic antenna 

FREQUENCY INDEPENDENT ANTENNA 

▪ A true frequency independent antenna is physically fixed in size and operates on 

an instantaneous basis over a wide bandwidth with relatively constant 

impedance, pattern, polarization and gain. 

▪ Their geometries are specified in angles. 

▪ E.g.: Bi-conical antenna, Spiral antenna and Helical antenna 

RUMSEY’S PRINCIPLE 

Rumsey’s principle is that the impedance and pattern properties of an antenna will be 

frequency independent if the antenna shape is specified only in terms of angles. 

We begin by assuming that an antenna, whose geometry is best described by the 

spherical coordinates (𝑟, 𝜃, 𝜙), has both terminals infinitely close to the origin and 

each is symmetrically disposed along the 𝜃 = 0, 𝜋-axes. It is assumed that the antenna 

is perfectly conducting, it is surrounded by an infinite homogeneous and isotropic 

medium, and its surface or an edge on its surface is described by a curve 

𝑟 = 𝐹(𝜃, 𝜙)                                                                         (1) 

where r represents the distance along the surface or edge. If the antenna is to be scaled 

to a frequency that is K times lower than the original frequency, the antenna’s physical 

surface must be made K times greater to maintain the same electrical dimensions. 

Thus, the new surface is described by 
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𝑟′ = 𝐾𝐹(𝜃, 𝜙)                                                                         (2) 

The new and old surfaces are identical; that is, not only are they similar but they are 

also congruent (if both surfaces are infinite). Congruence can be established only by 

rotation in𝜙. Translation is not allowed because the terminals of both surfaces are at 

the origin. Rotation in 𝜃 is prohibited because both terminals are symmetrically 

disposed along the 𝜃 = 0, 𝜋-axes. 

For the second antenna to achieve congruence with the first, it must be rotated by an 

angle C so that 

𝐾𝐹(𝜃, 𝜙)  = 𝐹(𝜃, 𝜙 + 𝐶)                                                                      (3) 

The angle of rotation C depends on K but neither depends on 𝜃 or 𝜙. Physical 

congruence implies that the original antenna electrically would behave the same at 

both frequencies. However, the radiation pattern will be rotated azimuthally through 

an angle C. For unrestricted values of K(0 ≤ 𝐾 ≤ ∞), the pattern will rotate by C in 𝜙 

with frequency, because C depends on K but its shape will be unaltered. Thus, the 

impedance and pattern will be frequency independent. 

To obtain the functional representation of 𝐹(𝜃, 𝜙), both sides of (3) are differentiated 

with respect to C to yield 

𝑑

𝑑𝐶
[𝐾𝐹(𝜃, 𝜙)] =

𝑑

𝑑𝐶
[𝐹(𝜃, 𝜙 + 𝐶)]                                                                     (4) 

𝐹(𝜃, 𝜙)
𝑑𝐾

𝑑𝐶
=  

𝜕

𝜕(𝜙 + 𝐶)
[𝐹(𝜃, 𝜙 + 𝐶)]                                                        (5) 

Differentiate (3) relative to 𝜙, we get 

𝜕

𝜕𝜙
[𝐾𝐹(𝜃, 𝜙)] =

𝜕

𝜕𝜙
[𝐹(𝜃, 𝜙 + 𝐶)]                                                                     (6) 
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𝐾
𝜕

𝜕𝜙
[𝐹(𝜃, 𝜙)] =

𝜕

𝜕(𝜙 + 𝐶)
[𝐹(𝜃, 𝜙 + 𝐶)]                                                           (7) 

Comparing (5) and (7), we get  

𝐹(𝜃, 𝜙)
𝑑𝐾

𝑑𝐶
=  𝐾

𝜕𝐹(𝜃, 𝜙)

𝜕𝜙
                                                                             (8) 

By substituting 𝑟 = 𝐹(𝜃, 𝜙), 

𝑟
𝑑𝐾

𝑑𝐶
=  𝐾

𝜕𝑟

𝜕𝜙
                                                                             (9) 

1

𝐾
 
𝑑𝐾

𝑑𝐶
=  

1

𝑟
 
𝜕𝑟

𝜕𝜙
                                                                             (10) 

LHS of above equation is independent of 𝜃 and 𝜙, therefore the general solution is 

given as 

 𝑟 = 𝐹(𝜃, 𝜙) = 𝑒𝑎𝜙𝑓(𝜃)                                                                       (11) 

where 𝑎 =
1

𝐾
 
𝑑𝐾

𝑑𝐶
 and 𝑓(𝜃) is completely arbitrary function 

Thus, for any antenna to have frequency independent characteristics, its surface must 

be described by (11). 

 

FREQUENCY-INDEPENDENT PLANAR LOG SPIRAL ANTENNA 

The equation for a logarithmic or log spiral is given by  

𝑟 = 𝑎𝜃                                                                                         (12) 

ln 𝑟 = ln 𝑎𝜃 = 𝜃 ln 𝑎                                                                  (13) 

where, 

𝑟 = radial distance to point P on spiral 
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𝜃= angle with respect to x-axis  

a=constant 

 

Logarithmic spiral or log spiral 

From (12), the rate of change of radius with angle is 

𝑑𝑟

𝑑𝜃
= 𝑎𝜃 ln 𝑎 = 𝑟 ln 𝑎                                                                  (14) 

The constant a in (14) is related to the angle 𝛽 between the spiral and a radial line 

from the origin as given by 

ln 𝑎 =
𝑑𝑟

𝑟𝑑𝜃
=

1

𝑡𝑎𝑛𝛽
                                                       (15) 

Thus, from (14) and (15), 

𝜃 =
ln 𝑟

ln 𝑎
= 𝑡𝑎𝑛𝛽 ln 𝑟                                                       (16) 

The log spiral was constructed so as to make 𝑟 = 1 at 𝜃 = 0 and 𝑟 = 2 at  𝜃 = 𝜋. 

These conditions determine the value of the constants a and  𝛽. Thus, from (15) and 

(16), 
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𝑡𝑎𝑛𝛽 =
𝜃

ln 𝑟
⇒ 𝛽 = tan−1 [

𝜃

ln 𝑟
]                                                       (17) 

For 𝑟 = 2 at  𝜃 = 𝜋,  

𝛽 = tan−1 [
𝜋

ln 2
] = 77.60                                                                                  

ln 𝑎 =
1

𝑡𝑎𝑛𝛽
   ⇒ 𝑎 = exp {

1

𝑡𝑎𝑛77.60
} = 1.247                                                                 

Thus, the shape of the spiral is determined by the angle 𝛽 which is same for all points 

on the spiral. 

 Let a second log spiral, identical in form to the one in figure shown below, be 

generated by an angular rotation of the spiral by a factor 𝛿 so that (12) becomes 

𝑟2 = 𝑎𝜃−𝛿                                                                                               (18) 

and a third spiral and fourth spiral given by  

𝑟3 = 𝑎𝜃−𝜋                                                                                              (19) 

and 

𝑟4 = 𝑎𝜃−𝜋−𝛿                                                                                               (20) 

Then, for a rotation 𝛿 =
𝜋

2
, we have 4 spirals at 900angles. Metalizing the areas 

between the spirals 1 & 4 and 2 & 3, with the other areas open, self-complementary 

and congruence conditions are satisfied. Connecting a generator or receiver across the 

inner terminals, we obtain Dyson’s frequency independent planar spiral antenna. 

▪ Polarization: RHCP radiation from the page and LHCP radiation into the page 

▪ High frequency limit of operation is determined by the spacing d of the input 

terminal and the low frequency limit by overall diameter D. The ratio D/d for 

the antenna is about 25 to 1. 
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▪ If we take 𝑑 =
𝜆

10
 at the high frequency limit and 𝐷 =

𝜆

2
 at the low frequency 

limit, the antenna bandwidth is 5 to 1. 

 

Frequency Independent Planar Spiral Antenna 

▪ Spiral slot antenna: Spiral-shaped slots are cut from a large ground plane and 

the antenna is fed with a co-axial cable bonded to one of the spiral arms. A 

dummy cable may be bonded to the other arm of symmetry. 

▪ Radiation Pattern for spiral antenna: Bi-directional broadside to the plane of 

the spiral. The patterns in both directions have a single broad lobe so that the 

gain is only a few dBi. 

▪ Input Impedance depends on 𝛿 and a and terminal separation (≃ 50 𝑡𝑜 100 Ω)  

▪ Ratio K of the radii across any arm, such as between spiral 2 and 3 is given by 

𝐾 =
𝑟3

𝑟2
=

𝑎𝜃−𝜋

𝑎𝜃−𝛿
 = 𝑎−𝜋+𝛿                                                                                       
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 For 𝛿 =
𝜋

2
 

𝐾 =
𝑟3

𝑟2
= 𝑎−

𝜋
2 = (1.247)−

𝜋
2 = 0.707 =

1

√2
 

FREQUENCY INDEPENDENT CONICAL SPIRAL ANTENNA 

▪ A tapered helix is a conical spiral antenna in which pitch angle is constant with 

diameter and turn spacing variable. 

 

Tapered Helix or Conical Spiral (Forward-fire) 

▪ Two arms of the conical spiral are fed at the center point or apex from a co-axial 

cable bonded to one of the arms, the spiral acting as a balun. 

▪ For symmetry, a dummy cable may be bonded to the other arm. 

▪ According to Dyson, input impedance is between 100 to 150 Ω for pitch angle 

𝛼 = 170 and full cone angles of 200 and 600. Smaller cone angles (less than 

300) have high F/B ratio. 

▪ Radiation Pattern: Uni-directional with maxima towards the apex. 

▪ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∝
𝐵𝑎𝑠𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (∼

𝜆

2
 𝑎𝑡 𝑙𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑎𝑝𝑒𝑥 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (∼
𝜆

4
 𝑎𝑡 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
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Dyson 2-arm balanced conical 

spiral (backward-fire antenna). 

Polarization is RCP. Inner 

conductor of coax connects to 

dummy at apex. 

 

LOG-PERIODIC ANTENNA 

 

▪ Log-Periodic antenna operates over broadband and its size varies with the operating 

frequency or wavelength. Although, LPDA is not specified in terms of angles yet its 

geometry is adjusted such that all the electrical properties of the antenna are repeated 

periodically with the logarithm of the frequency. 

▪ Dwight Isbell demonstrated first LPDA (1960). 

▪ Basic concept: A gradually expanding periodic structure array radiates more 

effectively when the array elements(dipoles) are near resonance so that with change in 

frequency, the active region moves along the array. 

▪ LPDA– a number of dipole antennas of different lengths are arranged at different 

spacings, used in array form. 

▪ Dipole lengths increase along the antenna so that the included angle 𝛼 is constant, and 

the lengths (𝑙) and spacing(𝑆) of the adjacent elements are scaled so that 

𝑙𝑛+1

𝑙𝑛
=

𝑆𝑛+1

𝑆𝑛
= 𝑘 =

1

𝜏
                                                                                 (21) 

where 

𝑘 = constant (𝑘 > 1) 

𝜏 = scale factor or design ratio or geometric ratio or periodicity factor (𝜏 > 1) 
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▪ Antenna is fed through a balanced twin line in zig-zag form which means the alternate 

dipole arms are fed through common line. 

▪ The apex angle is formed by the two imaginary straight lines passing through the 

edges of the dipole arms located on either side. 

▪ Moreover, the spacing between the dipoles near to the apex is smaller as compared to 

the spacing at the base. 

▪ There are three important regions of LPDA namely 

i. Inactive region (Transmission line) 

ii. Active region 

iii. Inactive region (Stop) 

 

Log-Periodic Dipole Array (LPDA) 

i. Transmission line region (𝑳 ≤
𝝀

𝟐
): At the middle of the operating range, the antenna 

elements are short with the resonant length, therefore the elements offer large 

capacitive reactance to the line. Hence, currents in these elements (1, 2, 3, 4, 5) are 

small and radiation is small. 

ii. Active region (𝑳 =
𝝀

𝟐
):  At a wavelength near the middle of the operating range, 

radiation occurs primarily from the central region of the antenna. This region offers 
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resistive impedance. Currents in this region have large values and maximum radiation 

takes place from this region. The current and input RF voltage is in phase. The spacing 

between the elements are now sufficiently large, causing the phase in the particular 

element to lead approximately by 900. For example, by the time the field radiated 

from the element 𝑙𝑛+1reaches 𝑙𝑛 , the phase of the element 𝑙𝑛 advances by 900 and the 

field from element  𝑙𝑛 add to the field of 𝑙𝑛+1 element , in phase producing a large 

resultant field towards left. Hence, there is a strong radiation towards right. 

iii. Stop region  (𝑳 ≤
𝝀

𝟐
): Elements 9,10&11 are almost one wavelength long and carry 

only small currents (they present a large inductive reactance to the line). Small 

currents in 9,10 & 11 mean that the antenna is effectively truncated at the right of the 

active region. Any fields (smaller magnitude) from elements 9,10&11 tend to cancel in 

both forward and backward directions. However, some radiation may occur broadside 

since the currents are approximately in phase. 

Radiation pattern: Thus, at a wavelength(𝜆), the radiation occurs from the middle 

portion where the dipole elements are 
𝝀

𝟐
 long. When the wavelength is increased, the 

radiation zone moves towards the right and when the wavelength is decreased, it moves 

to the left with maximum radiation toward the apex or feed point of the array. 

Log-periodic behaviour: 

▪ If the input impedance of a LPDA is plotted as a function of frequency, it will be 

repetitive. 

▪ However, if the input impedance is plotted as a function of logarithm of frequency, 

it will be periodic with each cycle being exactly identical to the preceding one. 

Hence the name log-periodic, because the variations are periodic with respect to 

the logarithm of frequency. 

▪ Other parameters that undergo the similar variations are the pattern, directivity, 

beamwidth and sidelobe level. 

▪ The relationship between two consecutive maxima frequencies and logarithmic 

frequency period is 
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log
𝑓2

𝑓1
= log

1

𝜏
⇒

𝑓2

𝑓1
=

1

𝜏
⇒ 𝑓1 = 𝜏𝑓2 

Because 𝜏 > 1,  𝑓1 < 𝑓2. 

 

Input impedance of LPDA as function of logarithm of frequency  

Design equations for LPDA 

 

LPDA geometry or determining the relation of parameters 

From the above figure, 

tan 𝛼 =
[
𝑙𝑛+1 − 𝑙𝑛

2 ]

𝑆
=

𝑙𝑛+1

2 [1 −
𝑙𝑛

𝑙𝑛+1
]

𝑆
                                                  (22) 

tan 𝛼 =  

𝑙𝑛+1

2
[1 −

1
𝑘

]

𝑆
                                                                                (23) 
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where 𝛼 =apex angle 

𝑘 = scale-factor 

For 𝑙𝑛+1 =
𝝀

𝟐
 (when active) 

tan 𝛼 =  
[1 −

1
𝑘

]

4 (
𝑆
𝜆

)
                                                                                    (24) 

tan 𝛼 =  
[1 −

1
𝑘

]

4𝑆𝜆
                                                                                    (25) 

From (24), 

tan 𝛼 =  
[1 −

1
𝑘

]

4 (
𝑆
𝜆

)
  =

1 − 𝜏

4𝜎
                                                                                 (26) 

 

Where  

𝜏 =
1

𝑘
 

𝜎 = (
𝑆

𝜆
) = spacing factor 

Hence from (26), 

𝛼  = tan−1 [
1 − 𝜏

4𝜎
]                                                                                 (27) 

▪ Bandwidth of LPDA (frequency ratio) is 𝐹 =
𝑙𝑛+1

𝑙1
= 𝑘𝑛 =

1

𝜏𝑛
 . The length 𝑙 and 

spacing 𝑆 for element 𝑛 + 1 is 𝑘𝑛greater than for element 1. 
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Example: 

Design a log periodic dipole array operating from 50 MHz to 200 MHz which has 𝜏 = 0.822 

and 𝜎 = 0.149. Find out the number of dipoles required to cover this bandwidth. 

Solution: 

Given: 𝜏 = 0.822; 𝜎 = 0.149; 𝑓𝑚𝑖𝑛 = 50 MHz; 𝑓𝑚𝑎𝑥 = 200 MHz 

 

The apex angle (𝛼) is defined as 

𝛼  = tan−1 [
1 − 𝜏

4𝜎
] = tan−1 [

1 − 0.822

4 × 0.149
] = 16.62° 

The lowest and highest wavelength can be obtained as 

𝜆𝐿 =
𝑐

𝑓𝑚𝑎𝑥
=

3 × 108

200 × 106
= 1.5 m 

𝜆𝐻 =
𝑐

𝑓𝑚𝑖𝑛
=

3 × 108

50 × 106
= 6 m 

 

The maximum and minimum lengths required for dipole antennas are defined as follows: 

𝐿𝑑 𝑚𝑎𝑥 =
𝜆𝐻

2
=

6

2
= 3 m 

𝐿𝑑 𝑚𝑖𝑛 =
𝜆𝐿

2
=

1.5

2
= 0.75 m 

The dipole lengths to cover 50 MHz to 200 MHz can be obtained using the following 

relation: 

𝐿𝑛 = 𝜏𝐿𝑛+1 

𝐿𝑛+1 =
𝐿𝑛

𝜏
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Now, let us start from the highest frequency of operation, i.e., 200 MHz for which the 

minimum size of dipole is 𝐿𝑑 𝑚𝑖𝑛 =
𝜆𝐿

2
=

1.5

2
= 0.75 m. 

Therefore, to start with minimum size, we have 

𝐿1 = 𝐿𝑑 𝑚𝑖𝑛 = 0.75 m 

The other dipole lengths are 

𝐿2 =
𝐿1

𝜏
=

0.75

0.822
= 0.912 m 

𝐿3 =
𝐿2

𝜏
=

0.912

0.822
= 1.109 m 

𝐿4 =
𝐿3

𝜏
=

1.109

0.822
= 1.350 m 

𝐿5 =
𝐿4

𝜏
=

1.350

0.822
= 1.642 m 

𝐿6 =
𝐿5

𝜏
=

1.642

0.822
= 2 m 

𝐿7 =
𝐿6

𝜏
=

2

0.822
= 2.433 m 

𝐿8 =
𝐿7

𝜏
=

2.433

0.822
= 2.96 m 

𝐿9 =
𝐿8

𝜏
=

2.96

0.822
= 3.6 m 

It should be noted that the highest length of the dipole should be greater than or equal to the 

maximum half wavelength, i.e., 𝐿𝑑 𝑚𝑎𝑥 =
𝜆𝐻

2
=

6

2
= 3 m 

The spacing between 𝑛th and (𝑛 + 1)th dipole can be derived from the following 

relationship: 

𝑆𝑛 = 2𝜎𝐿𝑛 
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Therefore, the spacing between all sections is given as: 

𝑆1 = 2𝜎𝐿1 = 2 × 0.149 × 0.75 = 0.224 

𝑆2 = 2𝜎𝐿2 = 2 × 0.149 × 0.912 = 0.272 

𝑆3 = 2𝜎𝐿3 = 2 × 0.149 × 1.109 = 0.33 

𝑆4 = 2𝜎𝐿4 = 2 × 0.149 × 1.350 = 0.402 

𝑆5 = 2𝜎𝐿5 = 2 × 0.149 × 1.642 = 0.489 

𝑆6 = 2𝜎𝐿6 = 2 × 0.149 × 2 = 0.596 

𝑆7 = 2𝜎𝐿7 = 2 × 0.149 × 2.433 = 0.725 

𝑆8 = 2𝜎𝐿8 = 2 × 0.149 × 2.96 = 0.882 

To cover the entire frequency range, nine dipoles are required. 
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UNIT-III 

ANTENNA ARRAYS  

 

 Antenna array is system of a similar antennas oriented similarly to get greater directivity 

in a desired direction. 

 Antenna array is a  radiating system consisting of several spaced and properly phased 

(current phase)  radiators. 

 

Linear Array: 

 An antenna array is said to be linear if the individual antennas of the array are equally 

spaced along a straight line. 

 Individual elements of the array are termed as Elements. 

 

Uniform Linear Array: 

 Uniform linear array is one  in which the elements are fed with a current of equal 

amplitude(magnitude) with uniform progressive phase shift along the line.  

 Elements in a multi-element array is generally a 
2


 dipole antenna. 

 

Factors that shape the radiation pattern of antenna array: 

 The geometrical configuration of the array 

 The spacing between the elements 

 The excitation amplitude of the individual elements 

 The excitation phase of the individual elements 

 The radiation pattern of the individual elements 

 

Two element array: 

 Simplest array is an array of two isotropic point sources separated by a distance d. 

 Two isotropic point sources symmetrically situated w.r.t the origin in the Cartesian co-

ordinate system is shown in figure 

 

 
 

 Consider that the two isotropic point sources are fed with current of equal amplitude and 

phase 

 The fields at a greater distant point at distant R from the origin O can be calculated as 

follows: 
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 Origin is taken as reference point for phase calculation. The waves from source1 reaches 

the point P at a later time than the waves from source 2 because of path difference 

between the two waves. 

           Path difference between the two waves is,  cosd  

                   

radiansd

ddifferencepathanglephase












cos

cos
22




 

      Field component due to source1 ( field lags) = 2
1


 j

eE  

     Field component due to source2( field leads)  = 2
2


 j

eE  

      Two isotropic point sources are fed with current of  equal amplitude and phase. 

           021 EEE   

          Total electric field at point P = 21 EEE   

            















 








2

cos
cos2

2
cos2 00

2
2

2
1

 d
EEeEeEE

jj

 

       

          

0

0max

2

2

E

E
E

EE

nor 



 

         









2

cos
cos

 d
Enor  

 

For the case  
2


d , 






























 









cos
2

cos
2

cos
2

2

cosnorE  

 

Calculation of maximum, minimum and half power direction of the field pattern: 

Maxima directions 

Normalized total field is maximum when  1cos
2

cos 










 

......2,1,0cos
2

max 







nwheren


 

00

max

max

27090

00cos
2

and

nwhen

















 

The field is maximum in the directions where  
00 27090 and  

Minima directions 

Normalized total field is minimum when  0cos
2

cos 










 

......2,1,0
2

)12(cos
2

min 







nwheren





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 
00

min

min

min

1800

1cos

0
2

cos
2

and

nwhen























 

The field is minimum in the directions where  00 1800 and  

Half Power Directions: 

At half power points, power is half the maximum and voltage or current is 
2

1
 times the 

maximum. 

Normalized total field is   
2

1
cos

2
cos 











 

......2,1,0
4

)12(cos
2









nwherenHPPD





 

 

00 12060

2

1
cos

0
4

cos
2

and

nwhen

HPPD

HPPD

HPPD























 

The field is 
2

1
 times the maximum  in the directions where 00 12060 and  

 

 

 
 

 The radiation pattern is perpendicular to the array axis. This array is referred to as 

Broadside array. 
Note:   Broadside array is defined as an array in which the principal direction is perpendicular 

to the array  axis 

 

 

Array of two point source with equal amplitude and opposite phase: 
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 Consider that the two isotropic point sources are fed with current of equal amplitude and 

opposite phase 

 The fields at a greater distant point at distant R from the origin O can be calculated as 

follows: 

 Origin is taken as reference point for phase calculation. The waves from source1 reaches 

the point P at a later time than the waves from source 2 because of path difference 

between the two waves. 

           Path difference between the two waves is,  cosd  

                   

radiansd

ddifferencepathanglephase












cos

cos
22




 

      Field component due to source1 ( field lags) = - 2
1


 j

eE  

     Field component due to source2( field leads)  = 2
2


 j

eE  

      Two isotropic point sources are fed with current of  equal amplitude  

           021 EEE   

          Total electric field at point P 

= 















 








2

cos
sin2

2
sin2 00

2
2

2
1

 d
jEEjeEeEE

jj

 

       

          

0

0max

2

2

jE

E
E

jEE

nor 



 

         









2

cos
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 d
Enor  

 

For the case  
2


d , 





























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








cos
2

sin
2

cos
2

2

sinnorE  

 

         Calculation of maximum, minimum and half power direction of the field pattern: 
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Maxima directions 

Normalized total field is maximum when  1cos
2

sin 










 

......2,1,0
2

)12(
cos

2
max 











nwhere

n 



 

00

max

max

1800

0
2

cos
2
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

















 

The field is maximum in the directions where  00 1800 and  

Minima directions 

Normalized total field is minimum when  0cos
2

sin 










 

......2,1,0cos
2

min 







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
 

 
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2
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
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


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






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

 

The field is minimum in the directions where  00 27090 and  

Half Power Directions: 

At half power points, power is half the maximum and voltage or current is 
2

1
 times the 

maximum. 

Normalized total field is   
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 times the maximum  in the directions where 00 12060 and  
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 Maximum radiation is along the axis of the array. This array is referred to as END FIRE 

array. 

 

 

Arrays of point sources with unequal amplitude and any phase 

  

 Let   be the phase difference between the currents. 

 The total phase difference between radiations of two sources at a distant point P is given 

by  
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Linear Array with n isotropic point sources of equal amplitude 

and spacing 
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 The point sources are fed with currents of equal amplitude and having an uniform 

progressive phase shift along the line  

 Field at a distant point P is given by, 
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In this derivation, point source 1 is taken as reference point. In case the reference point is 

shifted to the center of the array,  
2
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Radiation pattern of two nondirectional radiators fed with equal currents at 

the phasings shown. 
 

 
 

 

 
 

Radiation pattern of four nondirectional radiators 

 

 
 

 

 

 

 



EC6602 Antenna and Wave Propagation                                   Department of  ECE                                                                                     UNIT 3 

St.Joseph’ s College of Engineering/ St.Joseph’ s Institute of Technology           9                                                             

 

 

 
 

Principle of pattern multiplication 
 The field pattern of an array of non-isotropic but similar sources is the product of the 

pattern of the individual source and the pattern of an array of isotropic point sources having the 

same locations, relative amplitudes, and phase as the non- isotropic sources. 

The total field pattern of an array of non-isotropic but similar sources is the product of   

individual source pattern and the pattern of an array of isotropic point sources each located at the 

phase center of the individual source and having the same relative amplitude and phase, while the 

total phase pattern is the sum of the phase patterns of the individual source and the array of 

isotropic point sources. 
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Multiplication of Patterns 

 Simple method of obtaining radiation pattern. 

 Makes it possible to sketch rapidly, almost by inspection, the patterns of 

complicated arrays. 

 Useful tool in the design of arrays 

Example: 

Determination of radiation pattern of a four element array  in which the spacing between units is 

2


 and the currents are in phase ( 0 ) 
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Determination of radiation pattern by multiplication of patterns is illustrated below: 

 

       

        

 

 
 

(a) --  unit pattern 

(b) -- Group pattern 

(c) –  resultant pattern 

 

 This procedure provides a means for rapidly determining the radiation pattern of a 

complicated array without making length calculations. 

 The width of the principle lobe (between nulls) is the same as the width of the 

corresponding lobe of the group pattern. 
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 The number of secondary lobes can be determined from the number of nulls in the 

resultant pattern, which is just the sum of the nulls in the unit and group 

pattern(assuming none of the nulls are coincident). 

 Point by point multiplication of patterns yields the exact pattern . 

 

    Example 2  

 
 

Linear Array with uniform spacing, non uniform amplitude: 

(i) Binomial array 

(ii) Dolph-Tschebysheff array ( also referred to as Chebyshev array or 

Tschbyscheff array) 

Binomial array: 

 Current distribution follows the binomial series. 

 The current amplitudes are proportional to the coefficients of the 

successive terms of the Binomial series. 

 Binomial array possess the smallest side lobes. If the spacing is 
2


 or less 

than 
2


, Binomial array has no side lobes. 

 Binomial series : 
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 For m =3 
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                    Current distribution for 3 element binomial array is     1:2:1 

 Current distribution for 4 element binomial array is     1:3:3:1 

                                                                So on….. 

 Current distribution can be determined easily from Pascal’ s Triangle 
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 Principle of pattern multiplication can be used to determine the resultant radiation 

pattern. 

 For 3 element Binomial array, the resultant pattern is shown below: 

          
 Here antenna 2 and 3 coincide , and so they would be replaced by with a 

single antenna carrying double the current. 

 Four element Binomial array is shown in figure below: 
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  Note: 

 No side lobes in the radiation pattern of Binomial array 

 Half Power Beam width is more 

 

Disadvantages of Binomial array: 

(i) HPBW increases and hence the directivity decreases 

(ii) For design of large array, larger amplitude ratio of sources required. 

Adaptive array (smart antennas) 

 Smart antennas (also known as adaptive array antennas, digital antenna arrays) 

are antenna arrays with smart signal processing algorithms used to identify spatial signal 

signatures such as the direction of arrival (DOA) of the signal, and use them to 

calculate beamforming vectors which are used to track and locate the antenna beam on the 

mobile/target.  

 Smart antenna techniques are used notably in acoustic signal processing, track and 

scan radar, radio astronomy and radio telescopes, and mostly in cellular systems like W-

CDMA, UMTS, and LTE. 

 Smart antennas have many functions: DOA(Direction of Arrival) estimation, 

beamforming, interference nulling, and constant modulus preservation. 

Beam forming 

 Beamforming is the method used to create the radiation pattern of the antenna array by 

adding constructively the phases of the signals in the direction of the targets/mobiles 

desired, and nulling the pattern of the targets/mobiles that are undesired/interfering 

targets.  

 This can be done with a simple Finite Impulse Response (FIR) tapped delay line filter. 

The weights of the FIR filter may also be changed adaptively, and used to provide optimal 

beamforming, in the sense that it reduces the Minimum Mean Square Error between the 

desired and actual beam pattern formed.  

 Typical algorithms are the steepest descent, and Least Mean Squares algorithms. In digital 

antenna arrays with multi channels use the digital beamforming, usually by DFT or FFT. 

Types of Smart antennas 

Two main types of smart antennas: 

(i) Switched beam smart antennas  

(ii) Adaptive array smart antennas 

 Switched beam systems have several available fixed beam patterns. A decision is made as 

to which beam to access, at any given point in time, based upon the requirements of the 

system.  

 

                                    Switched beam smart antennas 

https://en.wikipedia.org/wiki/Antenna_array
https://en.wikipedia.org/wiki/Direction_of_arrival
https://en.wikipedia.org/wiki/Beamforming
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Radio_astronomy
https://en.wikipedia.org/wiki/Radio_telescope
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/W-CDMA
https://en.wikipedia.org/wiki/W-CDMA
https://en.wikipedia.org/wiki/UMTS
https://en.wikipedia.org/wiki/LTE_(telecommunication)
https://en.wikipedia.org/wiki/Beamforming
https://en.wikipedia.org/wiki/Radiation_pattern
https://en.wikipedia.org/wiki/Finite_Impulse_Response
https://en.wikipedia.org/wiki/Minimum_mean_square_error
https://en.wikipedia.org/wiki/Steepest_descent
https://en.wikipedia.org/wiki/Least_mean_squares
https://en.wikipedia.org/wiki/FFT
https://en.wikipedia.org/w/index.php?title=Switched_beam&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Adaptive_array&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Switched_beam&action=edit&redlink=1
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 Adaptive arrays allow the antenna to steer the beam to any direction of interest while 

simultaneously nulling interfering signals. 

 

.   

 

Adaptive array smart antenna 



1 
 

N-ELEMENT LINEAR ARRAY: UNIFORM SPACING, NONUNIFORM AMPLITUDE 

• Of the three distributions (uniform, binomial, and Tschebyscheff), a uniform amplitude 

array yields the smallest half-power beamwidth. It is followed, in order, by the Dolph-

Tschebyscheff and binomial arrays.  

• In contrast, binomial arrays usually possess the smallest side lobes followed, in order, 

by the Dolph-Tschebyscheff and uniform arrays.  

• Binomial arrays with element spacing equal or less than λ/2 have no side lobes.  

• It is apparent that the designer must compromise between side lobe level and 

beamwidth.  

• A criterion that can be used to judge the relative beamwidth and side lobe level of one 

design to another is the amplitude distribution (tapering) along the source.  

• It has been shown analytically that for a given side lobe level the Dolph-Tschebyscheff 

array produces the smallest beamwidth between the first nulls.  Conversely, for a given 

beamwidth between the first nulls, the Dolph-Tschebyscheff design leads to the 

smallest possible side lobe level.  

 Array Factor of non uniform array 

• An array of an even number of isotropic elements 2M (where M is an integer) is 

positioned symmetrically along the z-axis, as shown in Figure (a). The separation 

between the elements is d, and M elements are placed on each side of the origin. 

• If the total number of isotropic elements of the array is odd 2M + 1 (where M is an 

integer),  the arrangement is as shown in Figure (b) 

 

 An array of an even number of isotropic elements 2M (where M is an integer) is 

positioned symmetrically along the z-axis, as shown in Figure (a). The separation between the 



2 
 

elements is d, and M elements are placed on each side of the origin. Assuming that the 

amplitude excitation is symmetrical about the origin, the array factor for a nonuniform 

amplitude broadside array can be written as, 

(𝐴𝐹)2𝑀 = 𝑎1𝑒+𝑗(
1
2

 )𝑘𝑑𝑐𝑜𝑠𝜃 + 𝑎2𝑒+𝑗(
3
2

 )𝑘𝑑𝑐𝑜𝑠𝜃 + ⋯ + 𝑎𝑀𝑒
+𝑗(

(2𝑀−1)
2

 )𝑘𝑑𝑐𝑜𝑠𝜃
 

                                            +𝑎1𝑒−𝑗(
1

2
 )𝑘𝑑𝑐𝑜𝑠𝜃 + 𝑎2𝑒−𝑗(

3

2
 )𝑘𝑑𝑐𝑜𝑠𝜃 + ⋯ + 𝑎𝑀𝑒−𝑗(

(2𝑀−1)

2
 )𝑘𝑑𝑐𝑜𝑠𝜃

  

                             

(𝐴𝐹)2𝑀 (𝑒𝑣𝑒𝑛) = ∑ 𝑎𝑛 cos [(2𝑛 − 1)𝑢] 

𝑀

𝑛=1

 

                   Where  𝑢 =
𝜋𝑑

𝜆
 𝑐𝑜𝑠𝜃 

                  𝑎𝑛  is excitation coefficient 

If the total number of isotropic elements of the array is odd 2M + 1 (where M is an integer), 

as shown in Figure (b), the array factor can be written as 

(𝐴𝐹)2𝑀+1 = 2𝑎1 + 𝑎2𝑒+𝑗𝑘𝑑𝑐𝑜𝑠𝜃 + ⋯ + 𝑎𝑀+1𝑒+𝑗(𝑀)𝑘𝑑𝑐𝑜𝑠𝜃 

                                          + 𝑎2𝑒−𝑗𝑘𝑑𝑐𝑜𝑠𝜃 + ⋯ + 𝑎𝑀+1𝑒−𝑗(𝑀)𝑘𝑑𝑐𝑜𝑠𝜃 

                           

(𝐴𝐹)2𝑀+1 (𝑜𝑑𝑑) = ∑ 𝑎𝑛 cos [2(𝑛 − 1)𝑢] 

𝑀+1

𝑛=1

 

                     Where  𝑢 =
𝜋𝑑

𝜆
 𝑐𝑜𝑠𝜃 

                  𝑎𝑛  is excitation coefficient 

 

I. Dolph-Tschebyscheff Array: Broadside  

• Array,  with many practical applications, is the Dolph-Tschebyscheff array.  

• The method was originally introduced by Dolph. It is primarily a compromise between 

uniform and binomial arrays.  

• Its excitation coefficients are related to Tschebyscheff polynomials.  

• A Dolph-Tschebyscheff array with no side lobes (or side lobes of −∞ dB) reduces to 

the binomial design.  The excitation coefficients for this case, as obtained by both 

methods, would be identical.  

 Array Factor( for odd and even number of elements) 

(𝐴𝐹)2𝑀 (𝑒𝑣𝑒𝑛) = ∑ 𝑎𝑛 cos [(2𝑛 − 1)𝑢] 

𝑀

𝑛=1
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(𝐴𝐹)2𝑀+1 (𝑜𝑑𝑑) = ∑ 𝑎𝑛 cos [2(𝑛 − 1)𝑢] 

𝑀+1

𝑛=1

 

Where  𝑢 =
𝜋𝑑

𝜆
 𝑐𝑜𝑠𝜃 

𝑎𝑛  is excitation coefficient 

• The array factor of an array of even or odd number of elements with symmetric 

amplitude excitation is nothing more than a summation of M or M + 1 cosine terms.  

• The largest harmonic of the cosine terms is one less than the total number of elements 

of the array. Each cosine term, whose argument is an integer times a fundamental 

frequency, can be rewritten as a series of cosine functions with the fundamental 

frequency as the argument.  

That is, 

m=0     cos(mu) =1 

m=1     cos(mu) = cosu  

m=2     cos(mu)  = cos(2u) = 2 cos2u-1 

m=3     cos(mu) = cos(3u) = 4cos3u-3cosu 

m=4    cos(mu) = cos(4u) = 8cos4u-8cos2u+1 

m=5    cos(mu) = cos(5u) = 16cos5u-20cos3u+5cosu 

m=6    cos(mu) = cos(6u) = 32cos6u-48cos4u+18cos2u-1 

m=7    cos(mu) = cos(7u) = 64cos7u-112cos5u+56cos3u-7cosu 

m=8    cos(mu) = cos(8u) = 128cos8u-256cos6u+160cos4u-32cos2u+1 

m=9    cos(mu) = cos(9u) = 256cos9u-576cos7u+432cos5u-120cos3u+9cosu 

The above equations are obtained using  Euler’s  formula: 

[𝑒𝑗𝑢]
𝑚

= (𝑐𝑜𝑠𝑢 + 𝑗𝑠𝑖𝑛𝑢)𝑚 = 𝑒𝑗𝑚𝑢= cos(mu)+jsin(mu) 

And sin2u=1-cos2u 

If we let z = cosu 

The above equations can be written as 

m=0     cos(mu) =1=T0(z) 

m=1     cos(mu) = cosu = z = T1(z) 

m=2     cos(mu)  = cos(2u) = 2z2-1 = T2(z) 

m=3     cos(mu) = cos(3u) = 4z3-3z = T3(z) 

m=4    cos(mu) = cos(4u) = 8z4-8z2+1= T4(z) 
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m=5    cos(mu) = cos(5u) = 16z5-20z3+5z= T5(z) 

m=6    cos(mu) = cos(6u) = 32z6-48z4+18z2-1= T6(z) 

m=7    cos(mu) = cos(7u) = 64z7-112z5+56z3-7z= T7(z) 

m=8    cos(mu) = cos(8u) = 128z8-256z6+160z4-32z2+1 = T8(z) 

m=9    cos(mu) = cos(9u) = 256z9-576z7+432z5-120z3+9z= T9(z) 

and each is related to a Tschebyscheff (Chebyshev) polynomial Tm(z). These relations between 

the cosine functions and the Tschebyscheff polynomials are valid only in the −1 ≤ z ≤ +1 range.  

• Because | cos(mu)| ≤ 1, each Tschebyscheff polynomial is|Tm(z)| ≤ 1 for −1 ≤ z ≤ +1. 

For |z| > 1, the Tschebyscheff polynomials are related to the hyperbolic cosine 

functions. 

• The recursion formula for Tschebyscheff polynomials is 

𝑇𝑚(𝑧) = 2𝑧𝑇𝑚−1(𝑧) − 𝑇𝑚−2 (𝑧) 

• Each polynomial can also be computed using 

Tm(z) = cos[m cos−1(z)]             − 1 ≤ z ≤ +1  

Tm(z) = cosh[m cosh−1(z)]         z < −1,z > +1 

In Figure  below, the first six Tschebyscheff polynomials have been plotted.  

 

The following properties of the polynomials are of interest:  

1. All polynomials, of any order, pass through the point (1, 1).  

2. Within the range −1 ≤ z ≤ 1, the polynomials have values within −1 to +1.  

3. All roots occur within −1 ≤ z ≤ 1, and all maxima and minima have values of +1 and −1, 

respectively. 
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  Since the array factor of an even or odd number of elements is a summation of cosine 

terms whose form is the same as the Tschebyscheff polynomials, the unknown coefficients of 

the array factor can be determined by equating the series representing the cosine terms of the 

array factor to the appropriate Tschebyscheff polynomial. The order of the polynomial should 

be one less than the total number of elements of the array. 

 

Outline of the design procedure  

Assumptions: 

Number of elements, spacing between the elements, and ratio of major-to-minor lobe intensity 

(R0) are known.  The requirements will be to determine the excitation coefficients and the array 

factor of a Dolph-Tschebyscheff array.  

Problem Statement 

 Design a broadside Dolph-Tschebyscheff array of 2M or 2M + 1 elements with spacing d 

between the elements. The side lobes are R0 dB below the maximum of the major lobe. Find 

the excitation coefficients and form the array factor. 

 Procedure  

a. Select the appropriate array factor ( for odd or even number of array elements). 

 b. Expand the array factor. Replace each cos(mu) function (m = 0, 1, 2, 3,…) by its appropriate 

series expansion. 

 c. Determine the point z = z0 such that Tm(z0) = R0 (voltage ratio). The order m of the 

Tschebyscheff polynomial is always one less than the total number of elements. The design 

procedure requires that the Tschebyscheff polynomial in the −1 ≤ z ≤ z1, where z1 is the null 

nearest to z = +1, be used to represent the minor lobes of the array. The major lobe of the 

pattern is formed from the remaining part of the polynomial up to point z0(z1 < z ≤ z0).  

d. Substitute cos(u) = z /z0 in the array factor of step b. The cos(u) is replaced by z∕z0, and not 

by z, so that the equation, cos(u) = z /z0 would be valid for |z| ≤ |z0|.At |z| = |z0|, the equation, 

cos(u)=z /z0 attains its maximum value of unity.  

e. Equate the array factor from step b, after substitution of cos(u) = z /z0, to a Tm(z). The Tm(z) 

chosen should be of order m where m is an integer equal to one less than the total number of 

elements of the designed array. This will allow the determination of the excitation coefficients 

an’s.  

f. Write the array factor using the coefficients found in step e. 

Example problem 

Design a broadside Dolph-Tschebyscheff array of 10 elements with spacing d between the 

elements and with a major-to-minor lobe ratio of 26 dB. Find the excitation coefficients 

and form the array factor.  

Solution:  

1.The array factor is given by   

(𝐴𝐹)2𝑀 (𝑒𝑣𝑒𝑛) = ∑ 𝑎𝑛 cos [(2𝑛 − 1)𝑢] 

𝑀

𝑛=1

 

Where,    𝑢 =
𝜋𝑑

𝜆
 𝑐𝑜𝑠𝜃  and  𝑎𝑛  is excitation coefficient 
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2. When expanded, the array factor can be written as  

(AF) 10= a1 cos(u) + a2 cos(3u) + a3 cos(5u) + a4 cos(7u) + a5 cos(9u) 

Replace cos(u), cos(3u), cos(5u), cos(7u), and cos(9u) by their series expansions 

 cosu = z  

cos(3u) = 4z3-3z  

cos(5u) = 16z5-20z3+5z 

cos(7u) = 64z7-112z5+56z3-7z 

cos(9u) = 256z9-576z7+432z5-120z3+9z 

(AF) 10= a1 [z] + a2 [4z3-3z ] + a3 [16z5-20z3+5z] + a4 [64z7-112z5+56z3-7z] 

                             + a5 [256z9-576z7+432z5-120z3+9z ] 

(AF)10 = z[(a1 − 3a2 + 5a3 − 7a4 + 9a5)] + z3[(4a2 − 20a3 + 56a4 − 120a5)]  

                + z5[(16a3 − 112a4 + 432a5)] + z7[(64a4 − 576a5)] + z9[(256a5)] 

 

3. R0 (dB) = 26 = 20 log10(R0) or R0 (voltage ratio) = 20.  

Determine z0 by equating R0 to T9(z0).  

Thus R0 = 20 = T9(z0) = cosh[9 cosh−1(z0)]  

or z0 = cosh[ (1 /9) cosh−1(20)] = 1.0851  

 

Note:Another equation which can, in general, be used to find z0 and does not require hyperbolic 

functions is  

 𝑧0 =
1

2
[(𝑅0 + √𝑅0

2 − 1     )

1

𝑃

+ (𝑅0 − √𝑅0
2 − 1     )

1

𝑃

] 

where P is an integer equal to one less than the number of array elements (in this case P=9) 

 

4.Substitute cos(u) = z/z0 = z /1.0851 in the array factor found in step 2. 

 

5.Equate the array factor of step 2, after the substitution from step 4, to T9(z). 

(AF)10 = z[(a1 − 3a2 + 5a3 − 7a4 + 9a5)/z0]  

                  + z3[(4a2 − 20a3 + 56a4 − 120a5)/z0
3]  + z5[(16a3 − 112a4 + 432a5)/z0

5]  

                   + z7[(64a4 − 576a5)/z0
7] + z9[(256a5)/z0

9] = 256z9-576z7+432z5-120z3+9z = T9(z) 

Matching similar terms allows the determination of the an’s. 

 That is, 

(256a5)/z0
9  = 256    →    a5 = 2.0856 

(64a4 − 576a5)/z0
7 = -576  → a4 = 2.8308  

(16a3 − 112a4 + 432a5)/z0
5  = 432  →   a3 = 4.1184 

(4a2 − 20a3 + 56a4 − 120a5)/z0
3 = -120  → a2 = 5.2073 

(a1 − 3a2 + 5a3 − 7a4 + 9a5)/z0   = 9  → a1 = 5.8377 

In normalized form, the an coefficients can be written as  

a5 = 1 , a4 = 1.357, a3 = 1.974, a2 = 2.496 ,a1 = 2.798  normalized with respect to the amplitude 

of the elements at the edge. 

(The values can also be  normalized with respect to the amplitude of the center element)  

 

6. Using the  set of normalized coefficients, the array factor can be written as  

(AF)10 = 2.798 cos(u) + 2.496 cos(3u) + 1.974 cos(5u) + 1.357 cos(7u) + cos(9u)  

where u = [(𝜋d∕λ) cos 𝜃].  
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Binomial array: 

• Current distribution follows the binomial series. 

• The current amplitudes are proportional to the coefficients of the 

successive terms of the Binomial series. 

• Binomial array possess the smallest side lobes. If the spacing is 
2


 or 

less than 
2


, Binomial array has no side lobes. 

• Binomial series : 
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                    Current distribution for 3 element binomial array is     1:2:1 

• Current distribution for 4 element binomial array is     1:3:3:1 

                                                                So on….. 

• Current distribution can be determined easily from Pascal’s Triangle 

 

                              

 

 

 

• Principle of pattern multiplication can be used to determine the resultant 

radiation pattern. 

• For 3 element Binomial array, the resultant pattern is shown below: 
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• Here antenna 2 and 3 coincide , and so they would be replaced by with 

a single antenna carrying double the current. 

• Four element Binomial array is shown in figure below: 

 

  

Comparison of Uniform array and Binomial array 

 

  Note: 

• No side lobes in the radiation pattern of Binomial array 

• Half Power Beam width is more 

Disadvantages of Binomial array: 

(i) HPBW increases and hence the directivity decreases 

(ii) For design of large array, larger amplitude ratio of sources required. 
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Smart antennas 

Smart antenna systems combine: 

(i)Antenna arrays  with 

(ii)Digital signal processing algorithms  to make the antenna systems smart. 

 

 

 

• Smart antennas integrate antenna array technology and Digital Signal Processing(DSP) 

Techniques  to enhance communication system performance including 

(a) Capacity improvement 

(b) Range increase 

(c) Link quality improvement 

(d) Mitigation of fading 

• These are accomplished by  

(1)Beam steering 

Placing Beam maxima toward Signals of Interest (SOI) 

(2)Null Steering 

Placing Beam minima, ideally nulls, toward Interfering signals; Signals Not of Interest 

(SNOI)  

(3) Spatially separate signals 

Allowing different users to share the same spectral resources(SDMA) 
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Beam forming in Smart antenna systems 

By means of an internal feed back control, smart antenna can generate a customized radiation 

pattern to each remote user. In general, they form a main lobe toward a desired signal and 

rejects interference outside the main lobe. 

There are two types of smart antenna system 

(i) Switched – beam systems 

(ii) Adaptive antenna systems 

 

(a)Switched Beam Systems 

• They use a number of fixed beams at the base station. The base station selects one of 

the pre- determined fixed beam that provides the greatest output power for the desired 

user. 

 

 

                                                Figure: Concept of Switched Beam systems 

• This concept  is obviously an extension of cell sectoring as each sector is subdivided 

into smaller sectors. As the mobile unit moves throughout the cell, the switched-beam 

system detects the signal strength, chooses the appropriate predefined beam pattern. 

Advantages over Adaptive antenna systems: 

Low cost 

Less complex and easier to retrofit to existing wireless technologies 

Dis advantages over Adaptive antenna systems: 

Beam Resolution is lower 

 

(b) Adaptive array systems 

 Adaptive array systems, provide more degrees of freedom since they have the ability to 

adapt in real time the radiation pattern to the RF signal environment. In other words, they can 

direct the main beam toward the pilot signal or SOI while suppressing the antenna pattern in 
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the direction of the interferers or SNOIs. To put it simply, adaptive array systems can customize 

an appropriate radiation pattern for each individual user.  

 Adaptive array systems can locate and track signals (users and interferers) and 

dynamically adjust the antenna pattern to enhance reception while minimizing interference 

using signal-processing algorithms. A functional block diagram of such a system is shown in 

Figure.This figure shows that after the system down converts the received signals to baseband 

and digitizes them, it locates the SOI using the direction-of-arrival (DOA) algorithm, and it 

continuously tracks the SOI and SNOIs by dynamically changing the weights (amplitudes and 

phases of the signals).  

 Basically, the DOA computes the direction of arrival of all signals by computing the 

time delays between the antenna elements, and afterward the adaptive algorithm, using a cost 

function, computes the appropriate weights that result in an optimum radiation pattern. 

 

 

Figure Functional block diagram of an adaptive array system 

 

Optimal Beam forming techniques 

 In optimal beamforming techniques, a weight vector that minimizes a cost function is 

determined. Typically, this cost function, related with a performance measure, is inversely 

associated with the quality of the signal at the array output, so that when the cost function is 

minimized, the quality of the signal is maximized at the array output.  
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 The most commonly used optimally beamforming techniques or performance measures 

are the Minimum Mean Square Error (MMSE), Maximum Signal-to-Noise Ratio (MSNR), and 

Minimum (noise) Variance (MV). 

Adaptive algorithm 

 In practice, the signal environment is dynamic or time varying, and therefore, the 

weights need to be computed with adaptive methods. One of the simplest algorithms that is 

commonly used to adapt the weights is the Least Mean Square (LMS) algorithm. The LMS 

algorithm is a low complexity algorithm that requires no direct matrix inversion and no 

memory. 

Comparison of switched-beam scheme and  adaptive array scheme 

(i)Minimizing Interference 

 Adaptive array systems can customize an appropriate radiation pattern for each 

individual user. This is far superior to the performance of a switched-beam system, as shown 

in Figure. This figure shows that not only the switched-beam system may not able to place the 

desired signal at the maximum of the main lobe but also it exhibits the inability to fully reject 

the interferers. 

 

Figure  Comparison of (a) switched-beam scheme, and (b) adaptive array scheme. 

(ii)Coverage area comparison 

  Figure shows a comparison, in terms of relative coverage area, of conventional 

sectorized, switched-beam and adaptive arrays. In the presence of a low-level interference, both 

types of smart antennas provide significant gains over the conventional sectored systems. 

However, when a high-level interference is present, the interference rejection capability of the 
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adaptive systems provides significantly more coverage than either the conventional or 

switched-beam system. 

 

Figure:  Relative coverage area comparison among sectorized systems, switched-

beam systems, and adaptive array systems in (a) low interference environment, 

and (b) high interference environment 

 

SMART ANTENNAS’ BENEFITS  

(i) capacity increase 

  In densely populated areas, mobile systems are usually interference-limited, meaning 

that the interference from other users is the main source of noise in the system. This means that 

the signal-to interference ratio (SIR) is much smaller than the signal-to-noise ratio (SNR). 

  In general, smart antennas will, by simultaneously increasing the useful received signal 

level and lowering the interference level, increase the SIR. (there by increase capacity) 

 

(ii) range increase 

  Another benefit that smart-antenna systems provide is range increase. Because smart 

antennas are more directional than omnidirectional and sectorized antennas, a range increase 

potential is available.  

 In other words, smart antennas are able to focus their energy toward the intended users, 

instead of directing it in other unnecessary directions (wasting) like omnidirectional antennas 

do. This means that base stations can be placed further apart, leading to a more cost-efficient 

development. 

  Therefore, in rural and sparsely populated areas, where radio coverage rather than 

capacity is more important, smart-antenna systems are well suited. 
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(iii) Provide security 

  Another added advantage of smart-antenna systems is security. Smart antennas make 

it more difficult to tap a connection, because the intruder must be positioned in the same 

direction as the user as seen from the base station to successfully tap a connection.  

 

(iv) Helps in location finding 

 Because of the spatial detection nature of smart-antenna systems, they can be used to 

locate humans in emergencies or for any other location-specific service. 

 

SMART ANTENNAS’ DRAWBACKS 

 While smart antennas provide many benefits, they do suffer from certain drawbacks. 

  

• Their transceivers are much more complex than traditional base station transceivers. 

The antenna needs separate transceiver chains for each array antenna element and 

accurate real-time calibration for each of them.  

 

• The antenna beamforming is computationally intensive, which means that smart-

antenna base stations must be equipped with very powerful digital signal processors. 

This tends to increase the system costs in the short term, but since the benefits outweigh 

the costs, it will be less expensive in the long run.  

 

• For a smart antenna to have pattern-adaptive capabilities and reasonable gain, an array 

of antenna elements is necessary. 
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EC8701

ANTENNAS AND MICROWAVE 
ENGINEERING



UNIT IV
PASSIVE AND ACTIVE MICROWAVE DEVICES

1. Microwave Passive components:

▪ Directional Coupler, Power Divider, Magic Tee, Attenuator, Resonator

2. Principles of Microwave Semiconductor Devices:

▪ Gunn Diodes, IMPATT diodes, Schottky Barrier diodes, PIN diodes

3. Microwave tubes:

▪ Klystron, TWT, Magnetron
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Directional Couplers

▪ A directional coupler is a four-port microwave junction as shown below:

Two commonly used symbols for directional couplers, and power flow conventions

3



Directional Couplers

▪ Power supplied to port 1 is coupled to port 3 (the coupled port) with the coupling

factor 𝑆13
2 = 𝛽2, while the remainder of the input power is delivered to port 2

(the through port) with the coefficient 𝑆12
2 = 𝛼2 = 1 − 𝛽2 . In an ideal

directional coupler, no power is delivered to port 4 (the isolated port).

▪ The following quantities are commonly used to characterize a directional coupler:

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝐶 = 10 log
𝑃1
𝑃3

= −20 log 𝛽 dB

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐷 = 10 log
𝑃3
𝑃4

= 20 log
𝛽

𝑆14
dB

𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐼 = 10 log
𝑃1
𝑃4

= −20 log 𝑆14 dB

𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 = 𝐿 = 10 log
𝑃1
𝑃2

= −20 log 𝑆12 dB
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Directional Couplers

▪ The coupling factor indicates the fraction of the input power that is coupled to the

output port.

▪ The directivity is a measure of the coupler’s ability to isolate forward and

backward waves (or the coupled and uncoupled ports).

▪ The isolation is a measure of the power delivered to the uncoupled port.

▪ These quantities are related as

𝐼 = 𝐷 + 𝐶 dB

▪ The insertion loss accounts for the input power delivered to the through port,

diminished by power delivered to the coupled and isolated ports.

▪ The ideal coupler has infinite directivity and isolation 𝑆14 = 0 . Then both 𝛼 and

𝛽 can be determined from the coupling factor, C.
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Scattering Matrix of Directional Couplers

▪ The scattering matrix of a four-port network has the following form:

𝑆 =

𝑆11 𝑆12 𝑆13 𝑆14
𝑆21 𝑆22 𝑆23 𝑆24
𝑆31
𝑆41

𝑆32
𝑆42

𝑆33
𝑆43

𝑆34
𝑆44

▪ The scattering matrix of a reciprocal four-port network matched at all ports has the 

following form:

𝑆 =

0 𝑆12 𝑆13 𝑆14
𝑆12 0 𝑆23 𝑆24
𝑆13
𝑆14

𝑆23
𝑆24

0
𝑆34

𝑆34
0

where 𝑆11 = 𝑆22 = 𝑆33 = 𝑆44 = 0 and

𝑆21 = 𝑆12; 𝑆31 = 𝑆13; 𝑆41 = 𝑆14; 𝑆32 = 𝑆23; 𝑆42 = 𝑆24; 𝑆43 = 𝑆34
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Scattering Matrix of Directional Couplers

Unitary Property of S-matrix:

෍

𝑘=1

𝑁

𝑆𝑘𝑖𝑆𝑘𝑗
∗ = 𝛿𝑖𝑗 for all 𝑖, 𝑗 where ൝

𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗

𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗

▪ The dot product of any column of 𝑆 with the conjugate of that same column

gives unity. For 𝑖 = 𝑗,

෍

𝑘=1

𝑁

𝑆𝑘𝑖𝑆𝑘𝑖
∗ = 1

▪ The dot product of any column of 𝑆 with the conjugate of a different column

gives zero (the columns are orthonormal).

෍

𝑘=1

𝑁

𝑆𝑘𝑖𝑆𝑘𝑗
∗ = 0 for 𝑖 ≠ 𝑗
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Scattering Matrix of Directional Couplers

𝑆 =

0 𝑆12 𝑆13 𝑆14
𝑆12 0 𝑆23 𝑆24
𝑆13
𝑆14

𝑆23
𝑆24

0
𝑆34

𝑆34
0

▪ If the network is lossless, 10 equations result from the unitary, or energy

conservation, condition. Consider the multiplication of row 1 and row 2, and the

multiplication of row 4 and row 3:

𝑆13
∗ 𝑆23 + 𝑆14

∗ 𝑆24 = 0 1

𝑆14
∗ 𝑆13 + 𝑆24

∗ 𝑆23 = 0 2

▪ Multiply 1 by 𝑆24
∗ , and 2 by 𝑆13

∗ ,

𝑆13
∗ 𝑆23𝑆24

∗ + 𝑆14
∗ 𝑆24𝑆24

∗ = 0 ⟹ 𝑆13
∗ 𝑆23𝑆24

∗ + 𝑆14
∗ 𝑆24

2 = 0 3

𝑆14
∗ 𝑆13𝑆13

∗ + 𝑆24
∗ 𝑆23𝑆13

∗ = 0 ⟹ 𝑆14
∗ 𝑆13

2 + 𝑆24
∗ 𝑆23𝑆13

∗ = 0 4
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Scattering Matrix of Directional Couplers

𝑆13
∗ 𝑆23𝑆24

∗ + 𝑆14
∗ 𝑆24𝑆24

∗ = 0 ⟹ 𝑆13
∗ 𝑆23𝑆24

∗ + 𝑆14
∗ 𝑆24

2 = 0 3

𝑆14
∗ 𝑆13𝑆13

∗ + 𝑆24
∗ 𝑆23𝑆13

∗ = 0 ⟹ 𝑆14
∗ 𝑆13

2 + 𝑆24
∗ 𝑆23𝑆13

∗ = 0 4

▪ Subtract 3 from 4 ,

𝑆14
∗ 𝑆13

2 − 𝑆24
2 = 0 5

▪ Similarly, the multiplication of row 1 and row 3, and the multiplication of row 4 

and row 2, gives

𝑆12
∗ 𝑆23 + 𝑆14

∗ 𝑆34 = 0 6

𝑆14
∗ 𝑆12 + 𝑆34

∗ 𝑆23 = 0 7

▪ Multiply 6 by 𝑆12, and 7 by 𝑆34, 

𝑆12𝑆12
∗ 𝑆23 + 𝑆12𝑆14

∗ 𝑆34 = 0 ⟹ 𝑆12
2𝑆23 + 𝑆12𝑆14

∗ 𝑆34 = 0 8

𝑆34𝑆14
∗ 𝑆12 + 𝑆34𝑆34

∗ 𝑆23 = 0 ⟹ 𝑆34𝑆14
∗ 𝑆12 + 𝑆34

2𝑆23 = 0 9
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Scattering Matrix of Directional Couplers

𝑆12𝑆12
∗ 𝑆23 + 𝑆12𝑆14

∗ 𝑆34 = 0 ⟹ 𝑆12
2𝑆23 + 𝑆12𝑆14

∗ 𝑆34 = 0 8

𝑆34𝑆14
∗ 𝑆12 + 𝑆34𝑆34

∗ 𝑆23 = 0 ⟹ 𝑆34𝑆14
∗ 𝑆12 + 𝑆34

2𝑆23 = 0 9

▪ Subtract 9 from 8 ,

𝑆23 𝑆12
2 − 𝑆34

2 = 0 10

▪ One way for 5 and 10 to be satisfied is if 𝑆14 = 𝑆23 = 0, which results in a 

directional coupler.

𝑆 =

0 𝑆12 𝑆13 0

𝑆12 0 0 𝑆24
𝑆13
0

0
𝑆24

0
𝑆34

𝑆34
0
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Scattering Matrix of Directional Couplers

𝑆 =

0 𝑆12 𝑆13 0

𝑆12 0 0 𝑆24
𝑆13
0

0
𝑆24

0
𝑆34

𝑆34
0

▪ Then the self-products of the rows of the unitary scattering matrix yield the

following equations:

𝑆12
2 + 𝑆13

2 = 1 11

𝑆12
2 + 𝑆24

2 = 1 12

𝑆13
2 + 𝑆34

2 = 1 13

𝑆24
2 + 𝑆34

2 = 1 14

11 − 12 ⟹ 𝑆13 = 𝑆24
12 − 14 ⟹ 𝑆12 = 𝑆34

11



Scattering Matrix of Directional Couplers

▪ Further simplification can be made by choosing the phase references on three of

the four ports. Thus, we choose 𝑆12 = 𝑆34 = 𝛼, 𝑆13 = 𝛽𝑒𝑗𝜃 , and 𝑆24 = 𝛽𝑒𝑗𝜙 ,

where 𝛼 and 𝛽 are real, and 𝜃 and 𝜙 are phase constants to be determined (one of

which we are still free to choose). The dot product of rows 2 and 3 gives

𝑆12
∗ 𝑆13 + 𝑆24

∗ 𝑆34 = 0

which yields a relation between the remaining phase constants as

𝜃 + 𝜙 = 𝜋 ± 2𝑛𝜋

If we ignore integer multiples of 2π, there are two particular choices that commonly 

occur in practice:

1. Symmetric Coupler: 𝜃 = 𝜙 = Τ𝜋 2

2. Antisymmetric Coupler: 𝜃 = 0, 𝜙 = 𝜋

12



Scattering Matrix of Directional Couplers

1. Symmetric Coupler: 𝜃 = 𝜙 = Τ𝜋 2,

𝑆 =

0 𝛼 𝑗𝛽 0

𝛼 0 0 𝑗𝛽

𝑗𝛽
0

0
𝑗𝛽

0
𝛼

𝛼
0

2. Antisymmetric Coupler: 𝜃 = 0, 𝜙 = 𝜋,

𝑆 =

0 𝛼 𝛽 0

𝛼 0 0 −𝛽

𝛽
0

0
−𝛽

0
𝛼

𝛼
0

Note that these two couplers differ only in the choice of reference planes. In

addition, the amplitudes α and β are not independent, as 11 requires that

𝛼2 + 𝛽2 = 1

13



Types of Directional Couplers

1. Bethe hole directional coupler:

▪ The directional property of all directional couplers is produced through the use of

two separate waves or wave components, which add in phase at the coupled port

and are canceled at the isolated port.

▪ One of the simplest ways of doing this is to couple one waveguide to another

through a single small hole in the common broad wall between the two

waveguides. Such a coupler is known as a Bethe hole coupler, two versions of

which are shown in the following figures.

▪ From the small-aperture coupling theory, an aperture can be replaced with

equivalent sources consisting of electric and magnetic dipole moments.

▪ An incident 𝑇𝐸10 mode in guide 1, with an amplitude A, produces a normal

electric dipole in the aperture plus a tangential magnetic dipole proportional and in

the same direction as the magnetic field of the incident wave.

14



Types of Directional Couplers

Two versions of the Bethe hole directional coupler:

15

(a) Parallel waveguides

(b) Skewed waveguides



Types of Directional Couplers

1. Bethe hole directional coupler:

▪ In the upper guide, the normal electric dipole and the axial component of the

magnetic dipole radiate symmetrically in both directions.

▪ The transverse component of the magnetic dipole radiates antisymmetrically.

▪ The normal electric dipole moment and the axial magnetic dipole moment radiate

with even symmetry in the coupled guide, while the transverse magnetic dipole

moment radiates with odd symmetry.

▪ Thus, by adjusting the relative amplitudes of these two equivalent sources, we can

cancel the radiation in the direction of the isolated port, while enhancing the

radiation in the direction of the coupled port.

▪ Above figure shows two ways in which these wave amplitudes can be controlled;

in the coupler shown in figure(a), the two waveguides are parallel and the

coupling is controlled by 𝑠, the aperture offset from the sidewall of the waveguide.

16



Types of Directional Couplers

1. Bethe hole directional coupler:

▪ For the coupler of figure(b), the wave amplitudes are controlled by the angle,𝜃,

between the two waveguides.

▪ First consider the configuration of figure (a), with an incident 𝑇𝐸10 mode into

port 1. These fields can be written as

𝐸𝑦 = 𝐴 sin
𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧

𝐻𝑥 =
−𝐴

𝑍10
sin

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧

𝐻𝑧 =
𝑗𝜋𝐴

𝛽𝑎𝑍10
cos

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧

where 𝑍10 = Τ𝑘0𝜂0 𝛽 is the wave impedance of the 𝑇𝐸10 mode .

17



Types of Directional Couplers

1. Bethe hole directional coupler:

▪ The amplitudes of the forward and reverse traveling waves in the top guide are

𝐴10
+ =

−𝑗𝜔𝐴

𝑃10
𝜖0𝛼𝑒𝑠𝑖𝑛

2
𝜋𝑠

𝑎
−
𝜇0𝛼𝑚

𝑍10
2 𝑠𝑖𝑛2

𝜋𝑠

𝑎
+

𝜋2

𝛽2𝑎2
𝑐𝑜𝑠2

𝜋𝑠

𝑎

𝐴10
− =

−𝑗𝜔𝐴

𝑃10
𝜖0𝛼𝑒𝑠𝑖𝑛

2
𝜋𝑠

𝑎
+
𝜇0𝛼𝑚

𝑍10
2 𝑠𝑖𝑛2

𝜋𝑠

𝑎
−

𝜋2

𝛽2𝑎2
𝑐𝑜𝑠2

𝜋𝑠

𝑎

where 𝑃10 = 𝑎𝑏/𝑍10 is the power normalization constant. 

▪ Note from above expressions that the amplitude of the wave excited toward port 4

𝐴10
+ is generally different from that excited toward port 3 𝐴10

− , so we can cancel

the power delivered to port 4 by setting 𝐴10
+ = 0.

18



Types of Directional Couplers

1. Bethe hole directional coupler:

▪ If we assume that the aperture is round, then the polarizabilities as 𝛼𝑒 = 2𝑟0
3/3

and 𝛼𝑚 = 4𝑟0
3/3, where 𝑟0 is the radius of the aperture. Then we obtain the

following condition 𝐴10
+ = 0.

sin
𝜋𝑠

𝑎
=

𝜆0

2 𝜆0
2 − 𝑎2

▪ The coupling factor is then given by

𝐶 = 20 log
𝐴

𝐴10
− dB

and the directivity by

𝐷 = 20 log
𝐴10
−

𝐴10
+ dB
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Types of Directional Couplers

1. Bethe hole directional coupler:

▪ For the skewed geometry of figure(b), the aperture may be centered at 𝑠 = 𝑎/2,

and the skew angle 𝜃 adjusted for cancellation at port 4. In this case, the normal

electric field does not change with 𝜃 , but the transverse magnetic field

components are reduced by cos θ. We can account for the skew angle by replacing

𝛼𝑚 in the previous derivation by 𝛼𝑚 cos 𝜃. The wave amplitudes, then become,

for 𝑠 = 𝑎/2,

𝐴10
+ =

−𝑗𝜔𝐴

𝑃10
𝜖0𝛼𝑒 −

𝜇0𝛼𝑚

𝑍10
2 cos 𝜃

𝐴10
− =

−𝑗𝜔𝐴

𝑃10
𝜖0𝛼𝑒 +

𝜇0𝛼𝑚

𝑍10
2 cos 𝜃

20



Types of Directional Couplers

1. Bethe hole directional coupler:

▪ Setting 𝐴10
+ = 0 results in the following condition for the angle 𝜃,

cos 𝜃 =
𝑘0
2

2𝛽2

▪ The coupling factor then simplifies to

𝐶 = 20 log
𝐴

𝐴10
− = −20 log

4𝑘0
2𝑟0

3

3𝑎𝑏𝛽
dB

▪ The angular geometry of the skewed Bethe hole coupler is often a disadvantage in

terms of fabrication and application. In addition, both coupler designs operate

properly only at the design frequency; deviation from this frequency will alter the

coupling level and the directivity

21



Types of Directional Couplers

2. Multihole Couplers:

▪ A single-hole coupler has a relatively narrow bandwidth, at least in terms of its

directivity. However, if the coupler is designed with a series of coupling holes, the

extra degrees of freedom can be used to increase this bandwidth.

▪ First let us consider the operation of the two-hole coupler shown in figure. Two

parallel waveguides sharing a common broad wall are shown, although the same

type of structure could be made in microstrip line or stripline form.

▪ Two small apertures are spaced Τ𝜆𝑔 4 apart and couple the two guides. A wave

entering at port 1 is mostly transmitted through to port 2, but some power is

coupled through the two apertures.

▪ If a phase reference is taken at the first aperture, then the phase of the wave

incident at the second aperture will be −90°.

22



Types of Directional Couplers

2. Multihole Couplers:

Basic operation of a two-hole directional coupler

23



Types of Directional Couplers

2. Multihole Couplers:

▪ Each aperture will radiate a forward wave component and a backward wave

component into the upper guide; in general, the forward and backward amplitudes

are different.

▪ In the direction of port 3, both wave components are in phase because both have

traveled Τ𝜆𝑔 4 to the second aperture.

▪ However, we obtain a cancellation in the direction of port 4 because the wave

coming through the second aperture travels Τ𝜆𝑔 2 further than the wave component

coming through the first aperture.

▪ Clearly, this cancellation is frequency sensitive, making the directivity a sensitive

function of frequency.

▪ The coupling is less frequency dependent since the path lengths from port 1 to

port 3 are always the same.

24



Types of Directional Couplers

2. Multihole Couplers:

25



T-Junction Power Divider/ Waveguide Tees

▪ The T-junction power divider is a simple three-port network that can be used for

power division or power combining, and it can be implemented in virtually any

type of transmission line medium.

(a) E-plane waveguide T                                  (b) H-plane waveguide T

26



Scattering Matrix of Three-Port Networks (T-Junctions)

▪ The simplest type of power divider is a T-junction, which is a three-port network

with two inputs and one output. The scattering matrix of an arbitrary three-port

network has nine independent elements:

𝑆 =

𝑆11 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
𝑆31 𝑆32 𝑆33

▪ If the device is passive and contains no anisotropic materials, then it must be

reciprocal and its scattering matrix will be symmetric 𝑆𝑖𝑗 = 𝑆𝑗𝑖 .

▪ Usually, to avoid power loss, we would like to have a junction that is lossless and

matched at all ports. We can easily show, however, that it is impossible to

construct such a three-port lossless reciprocal network that is matched at all

ports.

27



Scattering Matrix of Three-Port Networks (T-Junctions)

▪ If all ports are matched, then 𝑆𝑖𝑖 = 0, and if the network is reciprocal, the

scattering matrix reduces to

𝑆 =

0 𝑆12 𝑆13
𝑆12 0 𝑆23
𝑆13 𝑆23 0

▪ If the network is also lossless, then energy conservation requires that the scattering 

matrix satisfy the unitary properties, which leads to the following conditions:

𝑆12
2 + 𝑆13

2 = 1 1

𝑆12
2 + 𝑆23

2 = 1 2

𝑆13
2 + 𝑆23

2 = 1 3

𝑆13
∗ 𝑆23 = 0 4

𝑆23
∗ 𝑆12 = 0 5

𝑆12
∗ 𝑆13 = 0 6
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Scattering Matrix of Three-Port Networks (T-Junctions)

𝑆12
2 + 𝑆13

2 = 1 1

𝑆12
2 + 𝑆23

2 = 1 2

𝑆13
2 + 𝑆23

2 = 1 3

𝑆13
∗ 𝑆23 = 0 4

𝑆23
∗ 𝑆12 = 0 5

𝑆12
∗ 𝑆13 = 0 6

▪ Equations (4)-(5) show that at least two of the three parameters 𝑆12, 𝑆13, 𝑆23 must

be zero.

▪ However, this condition will always be inconsistent with one of equations (1)–(3),

implying that a three-port network cannot be simultaneously lossless, reciprocal,

and matched at all ports.

▪ If any one of these three conditions is relaxed, then a physically realizable device

is possible.
29



E-Plane Tee

▪ An E-plane tee is a waveguide tee in which the axis of its side arm is parallel to 

the E field of the main guide.

E-plane Tee or Series-Tee

▪ If the collinear arms are symmetric about the side arm, there are two different

transmission characteristics as shown in the following figure.

30



E-Plane Tee

Two way transmission of  E-plane Tee

31

(a)Input through main arm

(b)Input from side arm



E-Plane Tee

▪ When waves are fed into the side arm (port 3), the waves appearing at port 1 and 

port 2 of the collinear arm will be in opposite phase and in the same magnitude. 

Therefore,

𝑆13 = −𝑆23
▪ In general, when an E-plane tee is constructed of an empty waveguide, it is poorly 

matched at the tee junction. Hence 𝑆𝑖𝑗 ≠ 0 if 𝑖 = 𝑗. However, since the collinear 

arm is usually symmetric about the side arm, 𝑆13 = 𝑆23 and 𝑆22 = 𝑆11. Hence 

the S-matrix is simplified as

𝑆 =

𝑆11 𝑆12 𝑆13
𝑆12 𝑆11 −𝑆13
𝑆13 −𝑆13 𝑆33
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E-Plane Tee

▪ If two in-phase waves are fed into port1 and 2 of the collinear arm, the output 

waves at port 3 will be opposite in phase and subtractive. Sometimes, this third 

port is called the difference arm.

▪ By analogy with the voltage relationship in a series circuit, E-plane tee is also 

called Series-T .

▪ By suitable matching elements, we can make 𝑆33 = 0 so that 𝑆13 = −𝑆23

𝑆 =

𝑆11 𝑆12 𝑆13
𝑆12 𝑆11 −𝑆13
𝑆13 −𝑆13 0
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E-Plane Tee

▪ Based on power consideration, 

𝑆13 =
1

2
⟹ 𝑆23 = −

1

2

▪ It can be shown that 

𝑆11 = 𝑆22 =
1

2
and 𝑆12 = 𝑆21 =

1

2
▪ S-matrix of E-plane Tee is 

𝑆 =

𝑆11 𝑆12 𝑆13
𝑆12 𝑆11 −𝑆13
𝑆13 −𝑆13 0

=

1

2

1

2

1

2
1

2

1

2
−

1

2
1

2
−

1

2
0

=
1

2

1 1 2

1 1 − 2

2 − 2 0
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H-Plane Tee

▪ In an H-plane tee, if two in-phase input waves are fed into ports 1 and 2 of the

collinear arm, the output waves at Port 3 will be in-phase and additive. Because of

this, the third port is called the sum arm.

H-Tee or Shunt-T

35



H-Plane Tee

▪ Conversely, an input wave at Port 3 will be equally divided into ports 1 and 2 in

phase. Because the magnetic field loops get divided into two arms 1 and 2 in a

manner similar to currents between branches in the parallel circuit, an H-plane

junction is also called a shunt junction.

▪ For a symmetrical and lossless junction, in absence of non-linear elements at the

H-plane junction, the S-parameters are obtained in a similar manner as in the case

of E-plane junction: Since it is a three-port junction, the scattering matrix can be

derived as follows:

𝑆 =

𝑆11 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
𝑆31 𝑆32 𝑆33
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H-Plane Tee

▪ Because of plane of symmetry of the junction, the Scattering coefficients are

𝑆23 = 𝑆13
▪ If Port 3 is perfectly matched to the junction, 𝑆33 = 0

▪ For symmetric property, 𝑆𝑖𝑗 = 𝑆𝑗𝑖

𝑆21 = 𝑆12; 𝑆31 = 𝑆13; 𝑆32 = 𝑆23 = 𝑆13
▪ With the above properties, 𝑆 becomes,

𝑆 =

𝑆11 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
𝑆31 𝑆32 𝑆33

=

𝑆11 𝑆12 𝑆13
𝑆12 𝑆22 𝑆13
𝑆13 𝑆13 0

▪ For the symmetry and lossless properties,

𝑆 𝑆 ∗𝑡 = 𝑈
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H-Plane Tee

𝑆11
2 + 𝑆12

2 + 𝑆13
2 = 1 1

𝑆12
2 + 𝑆22

2 + 𝑆13
2 = 1 2

𝑆13
2 + 𝑆13

2 = 1 3

𝑆13𝑆11
∗ + 𝑆13𝑆12

∗ = 0 4

▪ From first two equations, we get 𝑆22 = 𝑆11

▪ From third equation, we get 𝑆13 =
1

2

▪ From last equation, we get 

𝑆13 𝑆11
∗ + 𝑆12

∗ = 0

⟹ 𝑆13 = 0 or 𝑆11
∗ + 𝑆12

∗ = 0

𝑆13 ≠ 0 ⟹ 𝑆11
∗ + 𝑆12

∗ = 0 ⟹ 𝑆12 = −𝑆11

▪ Substituting these values in the first equation, 𝑆11 =
1

2
= 𝑆22 ⟹ 𝑆12 = −

1

2
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H-Plane Tee

𝑆11 =
1

2
= 𝑆22 ⟹ 𝑆12 = −

1

2

𝑆13 =
1

2

▪ Substituting these values in S-matrix, we get S-matrix of the H-plane Tee

𝑆 =

𝑆11 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
𝑆31 𝑆32 𝑆33

=

𝑆11 𝑆12 𝑆13
𝑆12 𝑆22 𝑆13
𝑆13 𝑆13 0

=

1

2
−
1

2

1

2

−
1

2

1

2

1

2
1

2

1

2
0

𝑆 =
1

2

1 −1 2

−1 1 2

2 2 0 39



Magic-Tee

▪ A hybrid tee is formed with the combination of the E-plane and H-plane tees and 

is called a magic-T. It has four ports as shown in figure:
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Magic-Tee

▪ The magic-T has the following characteristics when all the ports are terminated 

with a matched loads:

1. If two waves of equal magnitude and equal phase are fed into ports 1 and 2, the

output at Port 3 is subtractive and becomes zero and total output will appear

additively at the port 4. Hence, Port 3 is called the difference or E-arm and 4, the

sum or H-arm.

2. A wave incident at Port 3 (E-arm) divides equally between ports 1 and 2 but is

opposite in phase with no coupling to Port 4 (H-arm). Thus,

𝑆13 = −𝑆23, 𝑆43 = 0

3. A wave incident at Port 4 (H-arm) divides equally between ports 1 and 2 in

phase with no coupling to port 3 (E-arm). Thus,

𝑆14 = 𝑆12 =
1

2
= 𝑆24 = 𝑆42 𝑎𝑛𝑑 𝑆34 = 0
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Magic-Tee

4. A wave fed into one collinear port, 1 or 2, will not appear in the other collinear

Ports, 2 or 1, respectively. Hence, two collinear ports 1 and 2 are isolated from

each other, making

𝑆12 = 𝑆21 = 0

▪ A magic-T can be matched by putting tuning screws suitably in the E and H-arms

without destroying the symmetry of the junctions. Therefore, for an ideal lossless

magic-T matched at ports 3 and 4, 𝑆33 = 𝑆44 = 0. Therefore, the S-matrix for a

magic-T, matched at ports 3 and 4 given by

𝑆 =

𝑆11 𝑆12 𝑆13 𝑆14
𝑆21 𝑆22 𝑆23 𝑆24
𝑆31
𝑆41

𝑆32
𝑆42

𝑆33
𝑆43

𝑆34
𝑆44

=

𝑆11 𝑆12 𝑆13 𝑆14
𝑆12 𝑆22 −𝑆13 𝑆14
𝑆13
𝑆14

−𝑆13
𝑆14

0
0

0
0
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Magic-Tee

𝑆 =

𝑆11 𝑆12 𝑆13 𝑆14
𝑆21 𝑆22 𝑆23 𝑆24
𝑆31
𝑆41

𝑆32
𝑆42

𝑆33
𝑆43

𝑆34
𝑆44

=

𝑆11 𝑆12 𝑆13 𝑆14
𝑆12 𝑆22 −𝑆13 𝑆14
𝑆13
𝑆14

−𝑆13
𝑆14

0
0

0
0

▪ From the unitary property applied to rows 1 and 2, we get

𝑆11
2 + 𝑆12

2 + 𝑆13
2 + 𝑆14

2 = 1 1

𝑆12
2 + 𝑆22

2 + 𝑆13
2 + 𝑆14

2 = 1 2

▪ Subtracting these two equations:

𝑆11
2 + 𝑆22

2 = 0 ⟹ 𝑆11 = 𝑆22

▪ Form the unitary property applied to rows 3 and 4, 𝑆13 =
1

2
and 𝑆14 =

1

2

▪ Substituting these values in equation(1), 𝑆11
2 + 𝑆12

2 = 0 ⟹ 𝑆11 = 𝑆12 = 0
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Magic-Tee

𝑆 =

𝑆11 𝑆12 𝑆13 𝑆14
𝑆12 𝑆22 −𝑆13 𝑆14
𝑆13
𝑆14

−𝑆13
𝑆14

0
0

0
0

=

0 0 Τ1 2 Τ1 2

0 0 Τ−1 2 Τ1 2

Τ1 2

Τ1 2

Τ−1 2

Τ1 2

0
0

0
0

𝑆 =
1

2

0 0 1 1
0 0 −1 1
1
1

−1
1

0
0

0
0
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Attenuator

▪ Attenuators are passive devices used to control power levels in a microwave

system by partially absorbing the transmitted signal wave. Both fixed and variable

attenuators are designed using resistive films (aquadag coated dielectric sheet).

▪ A coaxial fixed attenuator uses a film with losses on the center conductor to

absorb some of the power as shown in figure(a).

▪ The fixed waveguide type [figure (b)] consists of a thin dielectric strip coated with

resistive film and placed at the center of the waveguide parallel to the maximum E

field.

▪ Induced current on the resistive film due to the incident wave results in power

dissipation, leading to attenuation of microwave energy.

▪ The dielectric strip is tapered at both ends up to a length of more than half

wavelength to reduce reflections. The resistive vane is supported by two dielectric

rods separated by an odd multiple of quarter wavelength and perpendicular to the

electric field [figure (b)].
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Attenuator

Microwave attenuator: 

(a) coaxial line fixed attenuator (b) and (c) waveguide attenuators
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Attenuator

Variable-type Attenuator:

▪ A variable-type attenuator can be constructed

▪ by moving the resistive vane by means of micrometer screw from one side of

the narrow wall to the center where the E-field is maximum [figure(b)] or

▪ by changing the depth of insertion of a resistive vane at an E-field maximum

through a longitudinal slot at the middle of the broad wall as shown in

figure(c).

▪ A maximum of 90 dB attenuation is possible with VSWR of 1.05.

▪ The resistance card can be shaped to give a linear variation of attenuation with the

depth of insertion.
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Attenuator

Precision-type Variable Attenuator:

▪ A precision-type variable attenuator makes use of a circular waveguide section (C)

containing a very thin tapered resistive card (R2), to both sides of which are

connected axisymmetric sections of circular-to-rectangular waveguide tapered

transitions (RC1 and RC2) as shown in figure(a).

▪ The center circular section with the resistive card can be precisely rotated by 360°

with respect to the two fixed sections of circular to rectangular waveguide

transitions.

▪ The induced current on the resistive card R2 due to the incident signal is dissipated

as heat and produces attenuation of the transmitted signal.

▪ The incident TE10 dominant wave in the rectangular waveguide is converted into a

dominant TE11 mode in the circular waveguide.
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Attenuator

Precision-type Variable Attenuator:

R1,R2,R3:Tapered resistive cards; RC1 and RC2: Rectangular-to-circular waveguide

transitions; C: Circular waveguide section 49



Attenuator

Precision-type Variable Attenuator:

▪ A very thin tapered resistive card is placed perpendicular to the E-field at the

circular end of each transition section so that it has a negligible effect on the field

perpendicular to it but absorbs any component parallel to it.

▪ Therefore, a pure TE11 mode is excited in the middle section.

▪ With reference to figure(b), if the resistive card in the center section is kept at an

angle 𝜃 relative to the E-field direction of the TE11 mode, the component 𝐸 cos 𝜃
parallel to the card gets absorbed while the component 𝐸 sin 𝜃 is transmitted

without attenuation. This later component finally appears as electric field

component 𝐸 𝑠𝑖𝑛2𝜃 in the rectangular output guide.

▪ Therefore, the attenuation of the incident wave is

𝛼 = −20 log 𝑆21 = −20 log 𝑠𝑖𝑛2𝜃 = −40 log sin 𝜃
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Attenuator

Electronically-Controlled Attenuators:

▪ For applications in various microwave systems, it is desirable to have an

attenuator whose attenuation can be controlled by the application of a suitable

signal, such as dc voltage or a bias current.

▪ Two devices that are suitable for use in an electronically controlled attenuator are

the PIN diode and a field-effect transistor.

▪ These devices can be used as variable resistors whose resistance is controlled by

the applied signal.

▪ The basic attenuator network is a symmetric T or 𝜋 network as shown in figures(a)

and (b).

▪ Resistor values 𝑅1 and 𝑅2 are chosen so that when the attenuator is terminated in a

resistance equal to the transmission-line characteristic impedance 𝑍𝑐, the input is

matched, that is, 𝑍𝑖𝑛 = 𝑍𝑐, and to provide an output voltage reduction by factor K.
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Attenuator

Electronically-Controlled Attenuators:

Two basic attenuator networks

52

𝑍𝑐

𝑍𝑐

𝑅1 𝑅1

𝑉𝑔

𝑅2

𝑉𝑔

𝑍𝑐

𝑍𝑐

𝑅2

𝑅1 𝑅1



Attenuator

Electronically-Controlled Attenuators:

▪ For the T-network , we have

𝑅𝑖𝑛 = 𝑅1 +
𝑅2 𝑅1 + 𝑍𝑐
𝑅1 + 𝑅2 + 𝑍𝑐

▪ For 𝑅𝑖𝑛 = 𝑍𝑐, We get the equation

𝑍𝑐 = 𝑅1 +
𝑅2 𝑅1 + 𝑍𝑐
𝑅1 + 𝑅2 + 𝑍𝑐

𝑍𝑐 𝑅1 + 𝑅2 + 𝑍𝑐 = 𝑅1 𝑅1 + 𝑅2 + 𝑍𝑐 + 𝑅2 𝑅1 + 𝑍𝑐

𝑍𝑐 𝑅1 + 𝑅2 + 𝑍𝑐
2 = 𝑍𝑐 𝑅1 + 𝑅2 + 𝑅1

2 + 2𝑅1𝑅2

⟹ 𝑍𝑐
2 = 𝑅1

2 + 2𝑅1𝑅2
▪ For 𝑅𝑖𝑛 = 𝑍𝑐, the Thevenin impedance seen by the load equals 𝑍𝑐.
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Attenuator

Electronically-Controlled Attenuators:

▪ The Thevenin open-circuit voltage across 𝑅2 is

𝑉𝑇𝐻 =
𝑅2

𝑅1 + 𝑅2 + 𝑍𝑐
𝑉𝑔

▪ The power delivered to the load is

𝑃𝐿 =
1

2

𝑉𝑇𝐻
2𝑍𝑐

2

𝑍𝑐 =
𝑅2

𝑅1 + 𝑅2 + 𝑍𝑐

2
𝑉𝑔

2

8𝑍𝑐

▪ The available power is ൗ𝑉𝑔
2
8𝑍𝑐, so that the power attenuation 𝐾2 is given by

𝐾2 =
𝑅2

𝑅1 + 𝑅2 + 𝑍𝑐

2
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Attenuator

Electronically-Controlled Attenuators:

▪ When K has been specified, and also requiring that 𝑅𝑖𝑛 = 𝑍𝑐 , we have two

equations that are readily solved for the required values of 𝑅1and 𝑅2. Thus, we

find that

𝑅1 =
1 − 𝐾

1 + 𝐾
𝑍𝑐

𝑅2 =
2𝐾

1 − 𝐾2
𝑍𝑐

▪ For 10-dB attenuation in a 50 Ω system, 𝐾 = 0.1 which results in

𝑅1 = 25.97 Ω

𝑅2 = 35.14 Ω
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Attenuator

Electronically-Controlled Attenuators:

▪ For 3-dB attenuation in a 50 Ω system, 𝐾 = 0.5 which results in 

𝑅1 = 8. 58Ω

𝑅2 = 141.4 Ω

▪ For a 𝜋-network, 𝑅1and 𝑅2 are given by

𝑅1 =
1 + 𝐾

1 − 𝐾
𝑍𝑐

𝑅2 =
1 − 𝐾2

2𝐾
𝑍𝑐

56



Microwave Resonators



Contents

• Series and Parallel Resonant Circuits

• Q-factor (unloaded and loaded) 

• Bandwidth

• Transmission Line Resonators

• Waveguide resonators



Introduction
A resonator is a device or circuit that
exhibits resonance

In an electrical circuit, resonance
condition occurs at a frequency
when capacitive and inductive
reactances become equal in
magnitude and electric energy
oscillates between electric field of a
capacitor and magnetic field of an
inductor.

Microwave resonators are used in a
variety of applications:

• Filters
• Oscillators
• Tuned amplifiers
• Frequency meters

At frequencies near resonance, a
microwave resonator can be
modeled as series or parallel RLC
lumped element electric circuit

The basic properties of series and
parallel RLC circuits are reviewed
first.



Series RLC Circuit

For the series RLC circuit shown in the 
figure:

𝑍𝑖𝑛 = 𝑅 + 𝑗𝜔𝐿 − 𝑗
1

𝜔𝐶

= 𝑅 + 𝑗𝜔𝐿 1 −
1

𝜔2𝐿𝐶

𝑍𝑖𝑛 = 𝑅 + 𝑗𝜔𝐿 1 −
𝜔0
2

𝜔2

where 𝜔0 =
1

𝐿𝐶

𝐶

𝑅 𝐿

𝑍𝑖𝑛

𝑉

−

+

𝐼

𝜔0

𝑅𝑒(𝑍𝑖𝑛)

𝜔

𝑅

𝐼𝑚(𝑍𝑖𝑛)

𝜔
0 0



Series RLC Circuit

𝑍𝑖𝑛(𝜔) = 𝑅2 + 𝜔2𝐿2 1 − Τ𝜔0
2 𝜔2 2

An important parameter of the resonant circuit 
is its 𝑄 which is defined as:

𝑄 = 𝜔
average energy stored

average power dissipated

𝑄 = 𝜔
𝑊𝑚 +𝑊𝑒

𝑃loss
At resonance, 𝑊𝑚 = 𝑊𝑒

Τ𝜔 𝜔01

𝑅

Τ𝑅 0.707

𝑍𝑖𝑛 𝜔

The 𝑄 of a resonator itself disregarding the external loading effect is called the
unloaded 𝑄 and denoted by 𝑄0



Series RLC Circuit

Therefore, 𝑄0 = 𝜔0
2𝑊𝑚

𝑃loss

𝑄0 = 𝜔0

𝐼 2𝐿

𝐼 2𝑅
= 𝜔0

𝐿

𝑅

Since 𝜔0
2 =

1

𝐿𝐶

𝑄0 =
1

𝜔0𝑅𝐶

Let us now study the behavior of the
input impedance of a series RLC
resonator near its resonance

𝑍𝑖𝑛 = 𝑅 + 𝑗𝜔𝐿
𝜔2 − 𝜔0

2

𝜔2

In the vicinity of resonance,

𝜔2 − 𝜔0
2 =

𝜔 − 𝜔0 𝜔 + 𝜔0 ≈2𝜔∆𝜔

For small ∆𝜔,

𝑍𝑖𝑛 ≈ 𝑅 + 𝑗𝜔𝐿
2𝜔∆𝜔

𝜔2
≈ 𝑅 + 𝑗2∆𝜔𝐿

𝑍𝑖𝑛 ≈ 𝑅 +
𝑗2∆𝜔𝑅𝑄0

𝜔0



Series RLC Circuit

Let us now consider half power fractional bandwidth of the resonator

We have 𝑃𝑖𝑛 =
1

2
𝑉𝐼∗ =

1

2
𝑍𝑖𝑛

𝑉

𝑍𝑖𝑛

2
Therefore,   𝑅𝑒 𝑃𝑖𝑛 =

1

2
R

𝑉

𝑍𝑖𝑛

2

When 𝜔 = 𝜔0, 𝑍𝑖𝑛 = 𝑅 and ۂ𝑅𝑒 𝑃𝑖𝑛 𝜔=𝜔0
=

𝑉 2

2𝑅

When 𝑍𝑖𝑛
2 = 2𝑅2 that is 𝑍𝑖𝑛 =

𝑅

0.707
𝑅𝑒 𝑃𝑖𝑛 =

1

2
𝑅𝑒ۂ 𝑃𝑖𝑛 𝜔=𝜔0

From 𝑍𝑖𝑛 ≈ 𝑅 +
𝑗2∆𝜔𝑅𝑄0

𝜔0
,                    𝑍𝑖𝑛

2 = 𝑅2 +
4∆𝜔2𝑅2𝑄0

2

𝜔0
2 = 2𝑅2

⇒
2∆𝜔

𝜔0

2
=

1

𝑄0
2 Therefore, fractional bandwidth    

2∆𝜔

𝜔0
=

1

𝑄0



Parallel RLC Circuit
For the parallel RLC circuit shown in the figure:

𝑍𝑖𝑛 =
1

1
𝑅
+

1
𝑗𝜔𝐿

+ 𝑗𝜔𝐶
=

1

1
𝑅
−

𝑗
𝜔𝐿

1 − 𝜔2𝐿𝐶

𝑍𝑖𝑛 =

1
𝑅 + 𝑗

1 − 𝜔2𝐿𝐶
𝜔𝐿

1
𝑅

2

+
1 − 𝜔2𝐿𝐶

𝜔𝐿

2

𝑅𝑒 𝑍𝑖𝑛 attains its maximum value 𝑅 at the 
resonance frequency 

𝜔0 =
1

𝐿𝐶

𝑅 𝐶𝐿

𝑍𝑖𝑛

𝑉

+

−

𝐼

𝜔
𝜔

𝑅

𝑅𝑒 𝑍𝑖𝑛

𝜔0 𝜔0

𝐼𝑚 𝑍𝑖𝑛

0 0



Parallel RLC Circuit
For such parallel RLC circuit

𝑄0 = 𝜔0𝑅𝐶 =
𝑅

𝜔0𝐿
Near resonance 𝜔 = 𝜔0 + ∆𝜔

𝑍𝑖𝑛 =
1

𝑅
+ 𝑗𝜔𝐶 +

1

𝑗𝜔𝐿

−1

=
1

𝑅
+ 𝑗𝜔0𝐶 + 𝑗∆𝜔𝐶 +

1

𝑗 𝜔0 + ∆𝜔 𝐿

−1

𝑍𝑖𝑛 =
1

𝑅
+ 𝑗𝜔0𝐶 + 𝑗∆𝜔𝐶 +

1

𝑗𝜔0𝐿 1 + Τ∆𝜔 𝜔0

−1

𝑍𝑖𝑛 𝜔

Τ𝜔 𝜔01

𝑅

0.707𝑅

When Τ∆𝜔 𝜔0 ≪ 1 we can use the approximation Τ1 1 + Τ∆𝜔 𝜔0 ≈ 1 − Τ∆𝜔 𝜔0

𝑍𝑖𝑛 ≈
1

𝑅
+ 𝑗𝜔0𝐶 + 𝑗∆𝜔𝐶 +

1

𝑗𝜔0𝐿
−

∆𝜔

𝑗𝜔0
2𝐿

−1



Parallel RLC Circuit

𝑍𝑖𝑛 ≈
1

𝑅
+ 𝑗𝜔0𝐶 + 𝑗∆𝜔𝐶 +

1

𝑗𝜔0𝐿
−

∆𝜔

𝑗𝜔0
2𝐿

−1

𝑍𝑖𝑛 =
1

𝑅
+ 𝑗∆𝜔𝐶 +

𝑗∆𝜔

𝜔0
2𝐿

−1

𝑍𝑖𝑛 =
1

𝑅
+ 𝑗∆𝜔𝐶 + 𝑗∆𝜔𝐶

−1

=
𝑅

1 + 𝑗2∆𝜔𝑅𝐶

Since 𝑄0 = 𝜔0𝑅𝐶,

𝑍𝑖𝑛 =
𝑅

1 + 𝑗2∆𝜔 Τ𝑄0 𝜔0



Parallel RLC Circuit

𝑅𝑒 𝑃𝑖𝑛 =
1

2
𝑉

𝑉

𝑅

∗

=
1

2

𝑉 2

𝑅
=
1

2
𝐼 2 𝑍𝑖𝑛

2
1

𝑅

At resonance ȁ𝑅𝑒 𝑃𝑖𝑛 𝜔=𝜔0
=

1

2
𝐼 2𝑅

Therefore,  
𝑅𝑒 𝑃𝑖𝑛

ȁ𝑅𝑒 𝑃𝑖𝑛 𝜔=𝜔0

=
𝑍𝑖𝑛

2

𝑅2

For 
𝑅𝑒 𝑃𝑖𝑛

ȁ𝑅𝑒 𝑃𝑖𝑛 𝜔=𝜔0

to become 
1

2
,       

𝑅2

2
= 𝑍𝑖𝑛

2

From 𝑍𝑖𝑛 =
𝑅

1+𝑗2∆𝜔 Τ𝑄0 𝜔0
, 2∆𝜔 Τ𝑄0 𝜔0 = 1

Therefore, fractional bandwidth  Τ2∆𝜔 𝜔0 = Τ1 𝑄0



Loaded Q

The unloaded 𝑄 of a circuit 𝑄0 is the quality factor of the circuit without any
external loading

In practice, external circuitry connected to the resonator will produce loading
effect.

Let the loading of the external circuit be represented by a load resistance 𝑅𝐿
and the Q of the external circuit by 𝑄𝑒.

Let 𝑄𝐿 be the 𝑄of the loaded circuit.

For series RLC circuit 𝑄𝐿 = 𝜔0
𝐿

𝑅+𝑅𝐿
Therefore,

1

𝑄𝐿
=

𝑅+𝑅𝐿

𝜔0𝐿
=

1

𝑄0
+

1

𝑄𝑒

Similarly, for a parallel RLC circuit 𝑅 and 𝑅𝐿are in parallel and 

𝑄𝐿 =
𝑅𝑅𝐿

𝜔0 𝑅+𝑅𝐿 𝐿
Therefore, 

1

𝑄𝐿
=

𝜔0 𝑅+𝑅𝐿 𝐿

𝑅𝑅𝐿
=

1

𝑄𝑒
+

1

𝑄0



Transmission Line Resonators
Transmission line sections of various lengths and
terminations (open or short) can be used as a
resonator.

Let us consider a lossy transmission line of length 𝑙
terminated to a short circuit at one end. The
transmission line is low loss with very small value of
attenuation constant 𝛼

The transmission line has characteristic impedance 𝑍0
At 𝜔 = 𝜔0 𝑙 = Τ𝜆 2

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿 + 𝑍0 tanh 𝛾𝑙

𝑍0 + 𝑍𝐿 tanh 𝛾𝑙

𝑍𝑖𝑛

𝛼 𝛽 𝑍0

𝑙



Transmission Line Resonators

For 𝑍𝐿 = 0 𝑍𝑖𝑛 = 𝑍0 tanh 𝛾𝑙 = 𝑍0tanh 𝛼 + 𝑗𝛽 𝑙

Therefore,   𝑍𝑖𝑛 = 𝑍0
tanh 𝛼𝑙+𝑗 tan 𝛽𝑙

1+𝑗 tan 𝛽𝑙 tanh 𝛼𝑙

Since we have considered a low loss line, 𝛼𝑙 ≪ 1
tanh𝛼𝑙 ≈ 𝛼𝑙

𝛽𝑙 =
𝜔𝑙

𝑣𝑝
=
𝜔0𝑙

𝑣𝑝
+
∆𝜔𝑙

𝑣𝑝

Since 𝑙 =
𝜆

2
at 𝜔 = 𝜔0,   

𝜔0𝑙

𝑣𝑝
=

2𝜋𝑓0

𝜆𝑓0

𝜆

2
= 𝜋



Transmission Line Resonators

Now,    𝛽𝑙 =
𝜔0𝑙

𝑣𝑝
+

∆𝜔𝑙

𝑣𝑝
and      

𝜔0𝑙

𝑣𝑝
= 𝜋

Therefore,    𝛽𝑙 = 𝜋 +
∆𝜔𝜋

𝜔0
and   tan𝛽𝑙 = tan 𝜋 +

∆𝜔𝜋

𝜔0
≈

∆𝜔𝜋

𝜔0

Hence, 𝑍𝑖𝑛 = 𝑍0
tanh 𝛼𝑙+𝑗 tan 𝛽𝑙

1+𝑗 tan 𝛽𝑙 tanh 𝛼𝑙
≈ 𝑍0

𝛼𝑙+𝑗
∆𝜔𝜋

𝜔0

1+𝑗𝛼𝑙
∆𝜔𝜋

𝜔0

Therefore, 𝑍𝑖𝑛 ≈ 𝑍0 𝛼𝑙 + 𝑗
∆𝜔𝜋

𝜔0

Comparing with a series resonant circuit for which
𝑍𝑖𝑛 ≈ 𝑅 + 𝑗2∆𝜔𝐿



Transmission Line Resonators

𝑅 = 𝑍0𝛼𝑙 and   𝐿 =
𝜋𝑍0

2𝜔0

Capacitance 𝐶 can be found from 𝐶 =
1

𝜔0
2𝐿
=

2

𝜋𝜔0𝑍0

Unloaded 𝑄 of the resonator 𝑄0 =
𝜔0𝐿

𝑅
=

𝜋

2𝛼𝑙



Transmission Line Resonators

Let us now consider another transmission line resonator which 

consists  of a short-circuited transmission line of length Τ𝜆 4 .

𝑙 =
𝜆

4
at 𝜔 = 𝜔0

We have        𝑍𝑖𝑛 = 𝑍0
tanh 𝛼𝑙+𝑗 tan 𝛽𝑙

1+𝑗 tan 𝛽𝑙 tanh 𝛼𝑙

Multiplying the numerator and denominator by −𝑗 cot 𝛽𝑙

𝑍𝑖𝑛 = 𝑍0
1 − 𝑗tanh𝛼𝑙 cot 𝛽𝑙

tanh𝛼𝑙 − 𝑗 cot 𝛽𝑙



Transmission Line Resonators

Let 𝜔 = 𝜔0 + ∆𝜔

𝛽𝑙 =
𝜔0𝑙

𝑣𝑝
+
∆𝜔𝑙

𝑣𝑝
=
𝜋

2
+
𝜋∆𝜔

2𝜔0

Therefore,    cot 𝛽𝑙 = − tan
𝜋∆𝜔

2𝜔0
≈ −

𝜋∆𝜔

2𝜔0

We have       𝑍𝑖𝑛 = 𝑍0
1−𝑗tanh 𝛼𝑙 cot 𝛽𝑙

tanh 𝛼𝑙−𝑗 cot 𝛽𝑙

Therefore,    𝑍𝑖𝑛= 𝑍0
1+𝑗 𝛼𝑙

𝜋∆𝜔

2𝜔0

𝛼𝑙+𝑗
𝜋∆𝜔

2𝜔0

≈
𝑍0

𝛼𝑙+𝑗
𝜋∆𝜔

2𝜔0



Transmission Line Resonators

𝑍𝑖𝑛≈
𝑍0

𝛼𝑙 + 𝑗
𝜋∆𝜔
2𝜔0

=
1

𝛼𝑙
𝑍0

+ 𝑗
𝜋∆𝜔
2𝜔0𝑍0

For a parallel RLC circuit near resonance,

𝑍𝑖𝑛 ≈
𝑅

1+𝑗2∆𝜔𝑅𝐶
=

1
1

𝑅
+𝑗2∆𝜔𝐶

Therefore,    𝑅 =
𝑍0

𝛼𝑙
and   𝐶 =

𝜋

4𝜔0𝑍0

𝑄0 = 𝜔0𝑅𝐶 =
𝜋

4𝛼𝑙



Waveguide Resonators

At higher microwave frequencies transmission line

resonators have relatively low value of 𝑄.

Since open ended waveguide can radiate

significantly, waveguide resonators are usually short

circuited at both ends forming a cavity.

Electric and magnetic energy is stored within the

cavity enclosed.

Dissipation of power takes place on the waveguide

walls as well as in the dielectric material filling the

cavity if the dielectric is lossy.

Rectangular cavity

Cylindrical cavity



Waveguide Resonators

Coupling to cavity resonator may be done using a small aperture or a probe or a

loop.

Aperture coupling

Probe coupling

Loop coupling



Resonant Frequencies of Rectangular Cavity 

We first find the resonant frequencies

of the cavity assuming it to be

lossless.

The unloaded 𝑄 of the cavity is then

determined considering small amount

of loss on the waveguide walls as well

as in the dielectric material.

𝑏

𝑑

𝑎 𝑋

𝑌

𝑍

0



Resonant Frequencies of Rectangular Cavity 

For TEmn or TMmn mode

𝐸𝑡 𝑥, 𝑦, 𝑧 = Ԧ𝑒 𝑥, 𝑦 𝐴+𝑒−𝑗𝛽𝑚𝑛𝑧 + 𝐴−𝑒𝑗𝛽𝑚𝑛𝑧

where,

𝛽𝑚𝑛 = 𝑘2 −
𝑚𝜋

𝑎

2

−
𝑛𝜋

𝑏

2

Transverse variation Amplitudes of forward 

and backward wave

𝑏

𝑑

𝑎 𝑋

𝑌

𝑍

0



Resonant Frequencies of Rectangular Cavity 

𝐸𝑡 = 0 at 𝑧 = 0 ⇒ 𝐴+ = −𝐴−

𝐸𝑡 = 0 at 𝑧 = 𝑑

∴ 𝐸𝑡 𝑥, 𝑦, 𝑑 = −Ԧ𝑒 𝑥, 𝑦 𝐴+2𝑗 sin𝛽𝑚𝑛𝑑 = 0

For 𝐴+ ≠ 0

𝛽𝑚𝑛𝑑 = 𝑙𝜋 where 𝑙 = 1,2,3…

∴ For a rectangular cavity, the wave number

𝑘𝑚𝑛𝑙 =
𝑚𝜋

𝑎

2

+
𝑛𝜋

𝑏

2

+
𝑙𝜋

𝑑

2 For 𝑏 < 𝑎 < 𝑑 , the dominant

resonant mode is TE101 and 𝑑 =
𝜆𝑔

2

for TE10 mode.

𝑏

𝑑

𝑎 𝑋

𝑌

𝑍

0



Unloaded Q of TE10𝑙 mode

For TE10𝑙 mode we can write the field

components as follows:

𝐸𝑦 = 𝐴+ sin
𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 − 𝑒𝑗𝛽𝑧

𝐻𝑥 = −
𝐴+

𝑍TE
sin

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 + 𝑒𝑗𝛽𝑧

𝐻𝑧 =
𝑗𝜋𝐴+

𝑘𝜂𝑎
cos

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 − 𝑒𝑗𝛽𝑧

We have seen that for TE10 mode

𝐻𝑧 = 𝐴10 cos
𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧

𝐸𝑦 =
−𝑗𝜔𝜇𝑎

𝜋
𝐴10 sin

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧

𝐻𝑥 =
𝑗𝛽𝑎

𝜋
𝐴10 sin

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧

𝐻𝑦 = 𝐸𝑥 = 0

∴
−𝑗𝜔𝜇𝑎

𝜋
𝐴10 = 𝐴+

⇒ 𝐴10 = 𝑗𝐴+
𝜋

𝜔𝜇𝑎
=
𝑗𝐴+𝜋

𝑘𝜂𝑎

∵ 𝜔𝜇 = 𝑘𝜂



Unloaded Q of TE10𝑙 mode

𝐸𝑦 = 𝐴+ sin
𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 − 𝑒𝑗𝛽𝑧

𝐻𝑥 = −
𝐴+

𝑍TE
sin

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 + 𝑒𝑗𝛽𝑧

𝐻𝑧 =
𝑗𝜋𝐴+

𝑘𝜂𝑎
cos

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 − 𝑒𝑗𝛽𝑧

Substituting 𝐸0 =
2𝐴+

𝑗
, we get

𝐸𝑦 = 𝐸0 sin
𝜋𝑥

𝑎
sin

𝑙𝜋𝑧

𝑑

𝐻𝑥 = −
𝑗𝐸0
𝑍TE

sin
𝜋𝑥

𝑎
cos

𝑙𝜋𝑧

𝑑

𝐻𝑧 =
𝑗𝜋𝐸0
𝑘𝜂𝑎

cos
𝜋𝑥

𝑎
sin

𝑙𝜋𝑧

𝑑

𝑊𝑒 =
𝜖

4
න
𝑉

𝐸𝑦𝐸𝑦
∗ 𝑑𝑣 =

𝜖𝑎𝑏𝑑

16
𝐸0

2

At resonance,

𝑊𝑒 = 𝑊𝑚



Unloaded Q of TE10𝑙 mode

Case I. The dielectric is perfect but cavity walls are slightly lossy

The power loss on the conducting walls can be found as

𝑃𝑐 =
𝑅𝑠
2
න
𝑤𝑎𝑙𝑙𝑠

𝐻𝑡
2𝑑𝑠

𝑅𝑠 =
𝜔𝜇0
2𝜎

The conductor loss can be found as

𝑃𝑐 =
𝑅𝑠𝐸0

2𝜆2

8𝜂2
𝑙2𝑎𝑏

𝑑2
+
𝑏𝑑

𝑎2
+
𝑙2𝑎

2𝑑
+

𝑑

2𝑎

𝑄𝑐 =
2𝜔0𝑊𝑒

𝑃𝑐

Surface resistivity 

of metallic walls



Unloaded Q of TE10𝑙 mode

Case II. The dielectric is lossy but cavity

walls are perfectly conducting.

𝜖 = 𝜖′ − 𝑗𝜖′′ = 𝜖0𝜖𝑟 1 − 𝑗 tan 𝛿

Power dissipated within the dielectric volume

is

𝑃𝑑 =
1

2
න
𝑉

Ԧ𝐽 . 𝐸∗𝑑𝑣 =
𝜔𝜖′′

2
න
𝑉

𝐸 2𝑑𝑣

=
𝑎𝑏𝑑𝜔𝜖′′ 𝐸0

2

8

𝑄𝑑 with lossy dielectric but perfectly

conducting wall is

𝑄𝑑 =
2𝜔

𝜖′𝑎𝑏𝑑
16

𝐸0
2

𝑎𝑏𝑑𝜔𝜖′′ 𝐸0
2

8

=
𝜖′

𝜖′′
=

1

tan 𝛿

Unloaded Q of the cavity is

𝑄0 =
1

𝑄𝑐
+

1

𝑄𝑑

−1



Circular Waveguide Cavity Resonator

Since the dominant mode of circular waveguide

is TE11 , the dominant mode of the circular

waveguide cavity is TE111.

For TM modes, the mode with the lowest cut

off frequency is TM01 mode.

The resonant frequencies of TE𝑛𝑚𝑙 and TM𝑛𝑚𝑙

modes of the circular waveguide cavities can be

found as follows:

𝐸𝑡 𝜌, ∅, 𝑧 = Ԧ𝑒 𝜌, ∅ 𝐴+𝑒−𝑗𝛽𝑛𝑚𝑧 + 𝐴−𝑒𝑗𝛽𝑛𝑚𝑧

For TE𝑛𝑚 mode

𝛽𝑛𝑚 = 𝑘2 −
𝑝𝑛𝑚
′

𝑎

2

For TM𝑛𝑚 mode

𝛽𝑛𝑚 = 𝑘2 −
𝑝𝑛𝑚
𝑎

2



Circular Waveguide Cavity Resonator

𝐸𝑡 = 0 at 𝑧 = 0

We have

𝐴+ = −𝐴−

𝐸𝑡 = 0 at 𝑧 = 𝑑

We have

sin 𝛽𝑛𝑚𝑑 = 0

𝛽𝑛𝑚𝑑 = 𝑙𝜋 where 𝑙 = 1,2,3…

For the resonant TE𝑛𝑚𝑙 mode

𝑓𝑛𝑚𝑙 =
𝑐

2𝜋 𝜇𝑟𝜖𝑟

𝑝𝑛𝑚
′

𝑎

2

+
𝑙𝜋

𝑑

2

For the resonant TM𝑛𝑚𝑙 mode

𝑓𝑛𝑚𝑙 =
𝑐

2𝜋 𝜇𝑟𝜖𝑟

𝑝𝑛𝑚
𝑎

2

+
𝑙𝜋

𝑑

2



Circular Waveguide Cavity Resonator

𝑄 factor for the cylindrical cavities can be found

in the same manner as in rectangular cavities.

Cylindrical cavity operating at TE011 mode is

often used for frequency meters because of its

higher 𝑄
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EC8701

ANTENNAS AND MICROWAVE 
ENGINEERING



UNIT V
MICROWAVE DESIGN PRINCIPLES

▪ Impedance transformation

▪ Impedance Matching

▪ Microwave Filter Design

▪ RF and Microwave Amplifier Design

▪ Microwave Power amplifier Design

▪ Low Noise Amplifier Design

▪ Microwave Mixer Design

▪ Microwave Oscillator Design

2



 L-section impedance matching 

 Single and double stub matching 

 Quarter wave transformer



Matching Network

An impedance matching network
is placed between a load
impedance and a transmission
line.

The matching network is ideally
lossless, to avoid any loss of
power

It is designed in such a way that
the impedance seen looking into
the matching network is 𝑍0.

𝑍0
Matching
Network 𝑍𝐿

A matching network can be found as long 
as 𝑍𝐿 has positive real part
Factors that are considered while selecting 
a particular matching network are:
Complexity, bandwidth, Implementation 
and adjustibility



L-section impedance matching network 

Uses two reactive elements to match an arbitrary load to a
transmission line

𝑍𝐿

𝑗𝑋

𝑗𝐵𝑍0

Used when 𝓏𝐿 = Τ𝑍𝐿 𝑍0 is inside the
1 + 𝑗𝑥 circle in the smith chart

𝑍𝐿

𝑗𝑋

𝑗𝐵𝑍0

Used when 𝓏𝐿 = Τ𝑍𝐿 𝑍0 is outside  the
1 + 𝑗𝑥 circle in the smith chart



L-section impedance matching network 
For this case 𝑅𝐿 > 𝑍0

For impedance matching, we must have

𝑍0 = 𝑗𝑋 +
1

𝑗𝐵 + Τ1 𝑅𝐿 + 𝑗𝑋𝐿

𝑍0 = 𝑗𝑋 +
𝑅𝐿 + 𝑗𝑋𝐿

𝑗𝐵𝑅𝐿 − 𝐵𝑋𝐿 + 1

𝑍0 𝑗𝐵𝑅𝐿 − 𝐵𝑋𝐿 + 1
= 𝑗𝑋 𝑗𝐵𝑅𝐿 − 𝐵𝑋𝐿 + 1 + 𝑅𝐿 + 𝑗𝑋𝐿

Equating the real part from both sides

−𝑍0𝐵𝑋𝐿 + 𝑍0 = −𝑋𝐵𝑅𝐿 + 𝑅𝐿

𝐵 𝑋𝑅𝐿 − 𝑍0𝑋𝐿 = 𝑅𝐿 − 𝑍0

𝑍𝐿

𝑗𝑋

𝑗𝐵𝑍0

Used when 𝓏𝐿 = Τ𝑍𝐿 𝑍0 is inside the
1 + 𝑗𝑥 circle in the smith chart



L-section impedance matching network

𝑍0 𝑗𝐵𝑅𝐿 − 𝐵𝑋𝐿 + 1 = 𝑗𝑋 𝑗𝐵𝑅𝐿 − 𝐵𝑋𝐿 + 1 + 𝑅𝐿 + 𝑗𝑋𝐿
Equating the imaginary parts we can write

𝑍0𝐵𝑅𝐿 = −𝑋𝐵𝑋𝐿 + X + 𝑋𝐿
⇒ 𝑋 1 − 𝐵𝑋𝐿 = 𝑍0𝐵𝑅𝐿 − 𝑋𝐿

We therefore have a set of two equations
𝐵 𝑋𝑅𝐿 − 𝑍0𝑋𝐿 = 𝑅𝐿 − 𝑍0

and 
𝑋 1 − 𝐵𝑋𝐿 = 𝑍0𝐵𝑅𝐿 − 𝑋𝐿

from which 𝐵and 𝑋 are to be determined



L-section impedance matching network

From 𝑋 1 − 𝐵𝑋𝐿 = 𝑍0𝐵𝑅𝐿 − 𝑋𝐿,   

𝑋 =
𝑍0𝐵𝑅𝐿 − 𝑋𝐿
1 − 𝐵𝑋𝐿

Substituting 𝑋 in 𝐵 𝑋𝑅𝐿 − 𝑍0𝑋𝐿 = 𝑅𝐿 − 𝑍0

𝑍0𝐵
2𝑅𝐿

2 − 𝐵𝑅𝐿𝑋𝐿 − 𝐵𝑍0𝑋𝐿 + 𝐵2𝑍0𝑋𝐿
2 = 𝑅𝐿 − 𝑍0 − 𝑅𝐿 − 𝑍0 𝐵𝑋𝐿

𝐵2𝑍0(𝑅𝐿
2 + 𝑋𝐿

2) − 2𝐵𝑍0𝑋𝐿 − 𝑅𝐿 − 𝑍0 = 0



L-section impedance matching network

𝐵2𝑍0(𝑅𝐿
2 + 𝑋𝐿

2) − 2𝐵𝑍0𝑋𝐿 − 𝑅𝐿 − 𝑍0 = 0

𝐵 =
2𝑍0𝑋𝐿 ± 4𝑍0

2𝑋𝐿
2 + 4𝑍0(𝑅𝐿

2 + 𝑋𝐿
2) 𝑅𝐿 − 𝑍0

2𝑍0(𝑅𝐿
2 + 𝑋𝐿

2)

𝐵 =
𝑋𝐿 ± 𝑋𝐿

2 + (𝑅𝐿
2 + 𝑋𝐿

2) Τ𝑅𝐿 𝑍0 − 1

(𝑅𝐿
2 + 𝑋𝐿

2)

𝐵 =
𝑋𝐿 ± Τ𝑅𝐿 𝑍0 𝑅𝐿

2 + 𝑋𝐿
2 − 𝑅𝐿𝑍0

(𝑅𝐿
2 + 𝑋𝐿

2)



L-section impedance matching network

Since we use the matching network for  𝑅𝐿 > 𝑍0, the term 𝑅𝐿
2 +

𝑋𝐿
2 − 𝑅𝐿𝑍0 is always positive and therefore there exist a real 

valued solution for 𝐵.

Once 𝐵 is calculated, 𝑋 can be calculated from

𝑋 =
𝑍0𝐵𝑅𝐿 − 𝑋𝐿
1 − 𝐵𝑋𝐿



Example: L-section matching
Let an impedance of 𝑍𝐿 = 100 − 𝑗50 Ω is to be matched to a 50Ω line using
a L-section matching network at an operating frequency of 500 MHz. Let us
design the matching network.

We have

𝐵 =
𝑋𝐿 ± Τ𝑅𝐿 𝑍0 𝑅𝐿

2 + 𝑋𝐿
2 − 𝑅𝐿𝑍0

(𝑅𝐿
2 + 𝑋𝐿

2)

𝐵 =
−50 ± Τ100 50 1002 + 502 − 100 × 50

1002 + 502
= ቊ 0.0058 Ω

−1

−0.0138 Ω−1

𝑋 =
𝑍0𝐵𝑅𝐿 − 𝑋𝐿
1 − 𝐵𝑋𝐿

= ቊ
61.2372 Ω
−61.2372 Ω



Example: L-section matching

We have two solutions which are as follows:

Solution 1

𝐶 =
𝐵

2𝜋𝑓
= 1.85 pF

𝐿 =
𝑋

2𝜋𝑓
= 19.49 nH

Solution 2

𝐶 = −
1

2𝜋𝑓𝑋
= 5.2 pF

𝐿 = −
1

2𝜋𝑓𝐵
= 23.1  nH

Network for solution 1

Network for solution 2



L-section matching
For the matching network as shown, we have 
𝑅𝐿 < 𝑍0

1

𝑍0
= 𝑗𝐵 +

1

𝑗𝑋 + 𝑅𝐿 + 𝑗𝑋𝐿
1

𝑍0
= 𝑗𝐵 +

1

𝑅𝐿 + 𝑗(𝑋 + 𝑋𝐿)

𝑋 and 𝐵 can be found as

𝑋 = ± 𝑅𝐿 𝑍0 − 𝑅𝐿 − 𝑋𝐿

𝐵 = ±
𝑍0 − 𝑅𝐿 /𝑅𝐿

𝑍0

𝑍𝐿

𝑗𝑋

𝑗𝐵𝑍0

Used when 𝓏𝐿 = Τ𝑍𝐿 𝑍0 is outside  
the 1 + 𝑗𝑥 circle in the smith chart



Example: L-section matching with Smith chart
Let us now consider an example how L-
impedance can be done using a Smith chart.

Let us discuss the matching of a 100 Ω load
with a transmission line of characteristic
impedance 50 Ω at 100 MHz. We use Smith
chart to do this matching.

When we consider the matching in Smith chart
our starting point is normalized 𝓏𝐿 = 2 + 𝑗0
and after matching we reach 𝓏 = 1 + 𝑗0

Since 𝑅𝐿 > 𝑍0 , we use 
the following circuit 

𝑍𝐿

𝑗𝑋

𝑗𝐵𝑍0



Rotated 𝑟 = 1 circle

VSWR circle

𝓏 = 2

We mark 𝓏𝐿 = 2 + 𝑗0 on the smith chart.

Since we need to add an admittance first, we

first find 𝑦 = 0.5 + 𝑗0 and add a mirror of

𝑟 = 1 circle.

We add 𝑗𝑏 = 𝑗0.5 to reach rotated r = 1
circle

Therefore,
0.5

50
= 2𝜋 × 108× 𝐶

𝐶 = 16 pF

Having determined we come back to 𝑟 = 1
circle and we land at the point (1 − 𝑗1 ).
We add a reactance of jx = 𝑗1 to move to the

centre of the Smith chart.

Therefore,

50 = 2𝜋 × 108× 𝐿
𝐿 = 80 nH

𝑦 = 0.5



Stub Matching
A stub is a short section of transmission line which is either short circuited or

open circuited at one end.

A single stub matching circuit consists of a series or shunt stub as shown in the

figures below:

The design parameters are the distance of the stub 𝑑 from the load and length

of the stub 𝑙

𝑍𝐿𝑑

𝑙 𝑍0

𝑍0𝑍0

𝑍𝑖𝑛 = 𝑍0 + 𝑗𝑋

−𝑗𝑋

Open or Short
𝑑

𝑍0

𝑙

𝑍𝐿𝑍0

𝑍0Open 

or 

Short
𝑌𝑖𝑛 = 𝑌0 + 𝑗𝐵

−𝑗𝐵

Series Stub Matching
Shunt Stub Matching



Series Stub Matching

Analytical solution
The distance of the stub location 𝑑 is so

chosen that 𝑍𝑖𝑛 = 𝑍0 + 𝑗𝑋

The stub length 𝑙 is then so chosen for a short

or open stub that input impedance of the stub

is −𝑗𝑋. This results in matching.

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿 + 𝑗𝑍0 tan𝛽𝑑

𝑍0 + 𝑗𝑍𝐿 tan𝛽𝑑

We equate 𝑅𝑒 𝑍𝑖𝑛 to 𝑍0 and find solution

for 𝑑.

𝑍𝐿𝑑

𝑙 𝑍0

𝑍0𝑍0

𝑍𝑖𝑛 = 𝑍0 + 𝑗𝑋

−𝑗𝑋

Open or Short



Series Stub Matching
Analytical solution

For the computed value of 𝑑 we calculate 𝑋.

The stub length 𝑙 is then found out for a short

or open stub to provide − 𝑗𝑋.

Let us now derive the closed form

expressions

Let 𝑍𝐿 = 𝑅𝐿 + 𝑗𝑋𝐿

𝑌𝐿 =
1

𝑍𝐿
= 𝐺𝐿 + 𝑗𝐵𝐿

𝑍𝐿𝑑

𝑙 𝑍0

𝑍0𝑍0

𝑍𝑖𝑛 = 𝑍0 + 𝑗𝑋

−𝑗𝑋

Open or Short



Series Stub Matching
Let 𝑡 = tan𝛽𝑑

𝑌𝑖𝑛 =
1

𝑍𝑖𝑛
= 𝑌0

𝑌𝐿 + 𝑗𝑌0 tan𝛽𝑑

𝑌0 + 𝑗𝑌𝐿 tan𝛽𝑑

= 𝑌0
𝐺𝐿 + 𝑗𝐵𝐿 + 𝑗𝑌0𝑡

𝑌0 + 𝑗 𝐺𝐿 + 𝑗𝐵𝐿 𝑡

𝑌𝑖𝑛 = 𝑌0
𝐺𝐿 + 𝑗 𝐵𝐿 + 𝑌0𝑡

𝑌0 − 𝐵𝐿𝑡 + 𝑗𝐺𝐿𝑡

𝑍𝑖𝑛 = 𝑅 + 𝑗𝑋 =
1

𝑌𝑖𝑛

𝑅 =
𝐺𝐿 1 + 𝑡2

𝐺𝐿
2 + 𝐵𝐿 + 𝑌0𝑡

2

𝑋 =
𝐺𝐿
2 𝑡 − 𝑌0 − 𝑡𝐵𝐿 𝐵𝐿 + 𝑡𝑌0

𝑌0 𝐺𝐿
2+ 𝐵𝐿 + 𝑌0𝑡

2



Series Stub Matching

From  𝑅 =
𝐺𝐿 1+𝑡2

𝐺𝐿
2 + 𝐵𝐿+𝑌0𝑡

2

𝑌0 𝐺𝐿 − 𝑌0 𝑡2 − 2𝐵𝐿𝑌0𝑡 + 𝐺𝐿𝑌0 − 𝐺𝐿
2 − 𝐵𝐿

2 = 0

If 𝐺𝐿 = 𝑌0, 𝑡 = Τ−𝐵𝐿 2𝑌0
else

𝑡 =
𝐵𝐿 ± Τ𝐺𝐿 𝑌0 − 𝐺𝐿

2 + 𝐵𝐿
2 𝑌0

𝐺𝐿 − 𝑌0



Series Stub Matching
We get two solutions for 𝑑 which are given by 

𝑑

𝜆
=

1

2𝜋
tan−1 𝑡 𝑡 ≥ 0

1

2𝜋
𝜋 + tan−1 𝑡 𝑡 < 0

With the values of 𝑡 calculated, we calculate the values of 𝑋. Necessary stub 
reactance 𝑋𝑆 = −𝑋. 

If 𝑙𝑜 and 𝑙𝑠 respectively denote the lengths for the open and short circuited stubs, 
then 
𝑙𝑠

𝜆
=

1

2𝜋
tan−1

𝑋𝑆

𝑍0
= −

1

2𝜋
tan−1

𝑋

𝑍0
and   

𝑙𝑜

𝜆
= −

1

2𝜋
tan−1

𝑍0

𝑋𝑆
=

1

2𝜋
tan−1

𝑍0

𝑋

If any of the lengths comes out to be negative, Τ𝜆 2 is added.



Example: Impedance Matching Series Stub
Let us consider an example where 𝑍𝐿 = 100 + 𝑗50 Ω is to be matched to a 50
Ω line. By applying the analytical solutions we get:

𝑡 = −0.333 = 𝑡1 and 𝑡 = 1.0 = 𝑡2. We get two solutions for 𝑑
𝑑1
𝜆
=

1

2𝜋
𝜋 + tan−1 𝑡1 = 0.45

𝑑2
𝜆
=

1

2𝜋
tan−1 𝑡2 = 0.125

We get two solutions for 𝑋 as 𝑋1 = 50 and 𝑋2 = −50

Let us now find the lengths of the open circuited stubs to complete the solution

𝑙𝑜1

𝜆
=

1

2𝜋
tan−1

𝑍0

𝑋1
=0.125 and

𝑙𝑜2

𝜆
= 0.5 +

1

2𝜋
tan−1

𝑍0

𝑋2
=0.375



1 − 𝑗1

1 + 𝑗1

𝑍𝐿 = 2 + 𝑗1

𝑙1

𝑙2

𝑑

𝜆
= 0.338 − 0.213 = 0.125

𝑥 = −1
𝑥𝑆 = 1

𝑙0
𝜆
= 0.375

Solution: 1

Solution: 2
𝑑

𝜆
= 0.5 − 0.213 − 0.164

= 0.451

𝑥 = 1
𝑥𝑆 = −1
𝑙0
𝜆
= 0.125



Shunt Stub Matching
Analytical solution

The distance of the stub location 𝑑 is so chosen that
𝑌𝑖𝑛 = 𝑌0 + 𝑗B

The stub length 𝑙 is then so chosen for a short or open
stub that input susceptance of the stub is −𝑗B. This
results in matching.

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿 + 𝑗𝑍0 tan 𝛽𝑑

𝑍0 + 𝑗𝑍𝐿 tan 𝛽𝑑

𝑌𝑖𝑛 = 𝐺 + 𝑗𝐵

We equate 𝑅𝑒 𝑌𝑖𝑛 = G to 𝑌0 and find solution for 𝑑.

𝑍𝐿𝑍0

𝑑

𝑍0

𝑙
𝑍0

Open 

or 

Short

𝑌𝑖𝑛 = 𝑌0 + 𝑗𝐵

−𝑗𝐵



Analytical solution

For the computed value of 𝑑 we calculate 𝐵.

The stub length 𝑙 is then found out for a short

or open stub to provide − 𝑗𝐵.

Let us now derive the closed form

expressions

Let

𝑍𝐿 =
1

𝑌𝐿
= 𝑅𝐿 + 𝑗𝑋𝐿

𝑍𝐿

𝑑

𝑍0

𝑙

𝑍0

𝑍0Open 

or 

Short
𝑌𝑖𝑛 = 𝑌0 + 𝑗𝐵

−𝑗𝐵

Shunt Stub Matching



Similar to series stub matching, let 

𝑡 = tan𝛽𝑑

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿 + 𝑗𝑍0 tan𝛽𝑑

𝑍0 + 𝑗𝑍𝐿 tan𝛽𝑑

= 𝑍0
𝑅𝐿 + 𝑗𝑋𝐿 + 𝑗𝑍0𝑡

𝑍0 + 𝑗 𝑅𝐿 + 𝑗𝑋𝐿 𝑡

𝑍𝑖𝑛 = 𝑍0
𝑅𝐿 + 𝑗 𝑋𝐿 + 𝑍0𝑡

𝑍0 − 𝑋𝐿𝑡 + 𝑗𝑅𝐿𝑡

𝑌𝑖𝑛 = 𝐺 + 𝑗𝐵 =
1

𝑍𝑖𝑛

𝐺 =
𝑅𝐿 1 + 𝑡2

𝑅𝐿
2 + 𝑋𝐿 + 𝑍0𝑡

2

𝐵 =
𝑅𝐿
2 𝑡 − 𝑍0 − 𝑡𝑋𝐿 𝑋𝐿 + 𝑡𝑍0

𝑍0 𝑅𝐿
2+ 𝑋𝐿 + 𝑍0𝑡

2

Shunt Stub Matching



From  𝐺 =
𝑅𝐿 1+𝑡2

𝑅𝐿
2 + 𝑋𝐿+𝑍0𝑡

2

𝑍0 𝑅𝐿 − 𝑍0 𝑡2 − 2𝑋𝐿𝑍0𝑡 + 𝑅𝐿𝑍0 − 𝑅𝐿
2 − 𝑋𝐿

2 = 0

If 𝑅𝐿 = 𝑍0, 𝑡 = Τ−𝑋𝐿 2𝑍0
else

𝑡 =
𝑋𝐿 ± Τ𝑅𝐿 𝑍0 − 𝑅𝐿

2 + 𝑋𝐿
2 𝑍0

𝑅𝐿 − 𝑍0

Shunt Stub Matching



We get two solutions for 𝑑 which are given by 

𝑑

𝜆
=

1

2𝜋
tan−1 𝑡 𝑡 ≥ 0

1

2𝜋
𝜋 + tan−1 𝑡 𝑡 < 0

With the values of 𝑡 calculated, we calculate the values of 𝐵. Necessary stub 
reactance 𝐵𝑆 = −𝐵. 

If 𝑙𝑜 and 𝑙𝑠 respectively denote the lengths for the open and short circuited stubs, 
then 
𝑙𝑜

𝜆
=

1

2𝜋
tan−1

𝐵𝑆

𝑌0
= −

1

2𝜋
tan−1

𝐵

𝑌0
and   

𝑙𝑠

𝜆
= −

1

2𝜋
tan−1

𝑌0

𝐵𝑆
=

1

2𝜋
tan−1

𝑌0

𝐵

If any of the lengths comes out to be negative, Τ𝜆 2 is added.

Shunt Stub Matching



Example: Impedance Matching- Shunt Stub
Let us consider an example where 𝑍𝐿 = 100 + 𝑗60 Ω is to be matched to a 50
Ω line. By applying the analytical solutions we get:

𝑡 = 3.4091 = 𝑡1 and 𝑡 = −1.0091 = 𝑡2. We get two solutions for 𝑑
𝑑1
𝜆
=

1

2𝜋
tan−1 𝑡1 = 0.2046

𝑑2
𝜆
=

1

2𝜋
𝜋 + tan−1 𝑡2 = 0.3743

We get two solutions for 𝐵 as 𝐵1 = 0.0221and 𝐵2 = −0.0221

Let us now find the lengths of the open circuited stubs to complete the solution

𝑙𝑜1

𝜆
=

1

2𝜋
tan−1

𝐵1

𝑌0
=0.3671 and

𝑙𝑜2

𝜆
= 0.5 +

1

2𝜋
tan−1

𝐵2

𝑌0
=0.1329



𝑡1 = 3.4091
𝑡2 = −1.0091
𝑑1/𝜆 = 0.20459
𝑑2/𝜆 = 0.37428
𝑙𝑜1/𝜆 = 0.36710
𝑙𝑜2/𝜆 = 0.13290

Analytical

From Smith Chart

𝑑1
𝜆
= 0.5 − 0.46 + 0.164 = 0.204

𝑑2
𝜆
= 0.5 − 0.46 + 0.336 = 0.376

𝑙𝑜1/𝜆 = 0.132
𝑙𝑜2/𝜆 = 0.368

𝑍𝐿 = 100 + 𝑗60

Shunt Stub Matching using Open Stub

2 + 𝑗1.2

1 + 𝑗1.1

1 − 𝑗1.1

𝑦𝐿



Double Stub Matching
As shown in Fig.1, the load is at an

arbitrary distance from the first

stub.

𝑌0 𝑌0 𝑌𝐿
′

𝑗𝐵1𝑗𝐵2

𝑙1𝑙2

𝑑

Open 

Or short

Open 

Or short

𝑌0

𝑌0 𝑌𝐿𝑗𝐵1𝑗𝐵2

𝑙1𝑙2

𝑑

Open 

Or short

Open 

or short

𝑌0

In Fig.2, the load 𝑌𝐿
′ is

transformed to the position of

the first stub as 𝑌𝐿

Fig.1

Fig.2



Double Stub Matching

Analytical solution

From the figure, we have

𝑌1 = 𝑌𝐿 + 𝑗𝐵1 = 𝐺𝐿 + 𝑗𝐵𝐿 + 𝑗𝐵1
= 𝐺𝐿 + 𝑗 𝐵𝐿 + 𝐵1

𝑌2 = 𝑌0
𝑌1 + 𝑗𝑌0 tan𝛽𝑑

𝑌0 + 𝑗𝑌1 tan𝛽𝑑
We equate 𝑅𝑒 𝑌2 to 𝑌0 and find solution

for 𝑑.

𝑌0 𝑌𝐿𝑗𝐵1𝑗𝐵2

𝑙1𝑙2

𝑑

Open 

Or short

Open 

or short

𝑌0



Similar to earlier assumptions, let 𝑡 = tan𝛽𝑑

𝑌2 = 𝑌0
𝑌1 + 𝑗𝑌0 tan𝛽𝑑

𝑌0 + 𝑗𝑌1 tan𝛽𝑑

= 𝑌0
𝐺𝐿 + 𝑗 𝐵𝐿 + 𝐵1 + 𝑗𝑌0𝑡

𝑌0 + 𝑗 𝐺𝐿 + 𝑗 𝐵𝐿 + 𝐵1 𝑡

𝑌2 = 𝑌0
𝐺𝐿 + 𝑗 𝐵𝐿 + 𝐵1 + 𝑌0𝑡

𝑌0 − 𝐵𝐿𝑡 − 𝐵1𝑡 + 𝑗𝐺𝐿𝑡

Double Stub Matching



On equating  𝑅𝑒 𝑌2 to 𝑌0

𝐺𝐿
2 + 𝐺𝐿𝑌0

1 + 𝑡2

𝑡2
+

𝑌0 − 𝐵𝐿𝑡 − 𝐵1𝑡
2

𝑡2
= 0

𝐺𝐿 = 𝑌0
1 + 𝑡2

𝑡2
1 ± 1 −

4𝑡2 𝑌0 − 𝐵𝐿𝑡 − 𝐵1𝑡
2

𝑌2 1 + 𝑡2 2

∵ 𝐺𝐿is real,

0 ≤
4𝑡2 𝑌0 − 𝐵𝐿𝑡 − 𝐵1𝑡

2

𝑌2 1 + 𝑡2 2
≤ 1

0 ≤ 𝐺𝐿 ≤ 𝑌0
1 + 𝑡2

𝑡2
= 𝑌0

1 + tan2 𝛽𝑑

tan2 𝛽𝑑
=

𝑌0
sin2 𝛽𝑑

Double Stub Matching



𝐵1 = −𝐵𝐿 +
𝑌0 ± 1 + 𝑡2 𝐺𝐿𝑌0 − 𝐺𝐿

2𝑡2

𝑡

𝐵2 = ±
𝑌0 1 + 𝑡2 𝐺𝐿𝑌0 − 𝐺𝐿

2𝑡2 + 𝐺𝐿𝑌0
𝐺𝐿𝑡

If 𝑙𝑜 and 𝑙𝑠 respectively denote the lengths for the open and short 

circuited stubs
𝑙𝑜
𝜆
= −

1

2𝜋
tan−1

𝐵

𝑌0
and  

𝑙𝑠
𝜆
=

1

2𝜋
tan−1

𝑌0
𝐵

𝐵 = 𝐵1or 𝐵2

Double Stub Matching



Double Stub Matching Using Smith Chart

𝑌𝐵

𝑌0

𝑌𝐿
𝑌𝑠𝐴𝑌𝑠𝐵

𝑙𝐴𝑙𝐵

𝑑

Open 

Or short

Open 

or short

𝑌0

𝐵

𝑌𝑖

𝑌0

𝐴

𝐴′𝐵′

𝑌𝐴

𝑌𝑖 = 𝑌𝐵 + 𝑌𝑠𝐵 = 𝑌0
In normalized form, 1 = 𝑦𝐵 + 𝑦𝑠𝐵
Since 𝑦𝑠𝐵 is purely imaginary we must have,
𝑦𝐵 = 1 + 𝑗𝑏𝐵 and 𝑦𝑠𝐵 = −𝑗𝑏𝐵

Therefore, in the Smith chart 𝑦𝐵 must lie in the 𝑔 = 1
circle.
To meet this requirement 𝑦𝐴 at 𝐴𝐴′ must lie on the

𝑔 = 1 circle rotated by
4𝜋𝑑

𝜆
counter clockwise

direction.
Since 𝑦𝑠𝐴 is purely imaginary, the real part of 𝑦𝐴 must
be contributed solely by real part of 𝑦𝐿 i.e. 𝑔𝐿.
The solution of double stub matching is then
determined by the intersection of 𝑔𝐿 circle with
rotated 𝑔 = 1 circle .



Procedure

Plot 𝑔 = 1 circle.  𝑦𝐵should be located on 
this circle

Plot the rotated circle where 𝑦𝐴should be 
located

Plot 𝑦𝐿

𝑦𝐿

Find intersection of 𝑔 = 𝑔𝐿 circle with 
rotated 𝑔 = 1 circle at 𝑦𝐴1& 𝑦𝐴2

𝑦𝐴1

𝑦𝐴2

Find 𝑦𝐵 points on 𝑔 = 1 circle:
𝑦𝐵1 and 𝑦𝐵2

Determine the stub lengths 𝑙𝐴 and 𝑙𝐵

𝑦𝐵1

𝑦𝐵2



The shaded 
region  is the 
forbidden range 
of load 
admittances that 
can not be 
matched with the 
given double 
stub  tuner



Quarter-wave Transformer

A quarter-wave transformer is transmission line section of length
𝜆

4
having

characteristic impedance 𝑍1 and used to match a real load 𝑅𝐿 to a
transmission line of characteristic impedance 𝑍0, as shown in the figure.

𝑍1 𝑍𝐿 = 𝑅𝐿𝑍0

Τ𝑙 = 𝜆 4

𝑍𝑖𝑛

We know that 

𝑍𝑖𝑛 = 𝑍1
𝑅𝐿 + 𝑗𝑍1 tan 𝛽𝑙

𝑍1 + 𝑗𝑅𝐿 tan 𝛽𝑙

Dividing the numerator and 
denominator by tan 𝛽𝑙 and take 
the limit as 𝛽𝑙 → Τ𝜋 2, we can 

write 𝑍𝑖𝑛 =
𝑍1
2

𝑅𝐿
.  Equating 𝑍𝑖𝑛 to 

𝑍0 we get 𝑍1 = 𝑅𝐿𝑍0



Quarter-wave Transformer

We note that matching is obtained at the frequency at which the 
transformer is quarter wavelength long and at all odd harmonics 
where the length corresponds to 2𝑛 + 1 Τ𝜆 4.

The fractional bandwidth of such quarter-wave transformer can be 
found as:

∆𝑓

𝑓0
= 2 −

4

𝜋
cos−1

Γ𝑚

1 − Γ𝑚
2

2 𝑍1𝑅𝐿
𝑅𝐿 − 𝑍0

Γ𝑚 is the magnitude of the acceptable value of reflection coefficient



Use of Quarter-wave Transformer

Quarter-wave transformers can also be used in design of
matching network for matching complex load impedance to a
transmission line. The examples of such networks are shown:

𝑍𝐿𝑍0

Τ𝑙 = 𝜆 4

𝑍𝑖𝑛

𝑑

𝑍0𝑍1
𝑍𝐿𝑍0

Τ𝑙 = 𝜆 4

𝑍𝑖𝑛

𝑍1

Short or Open
𝑑

𝑍2



Microwave Filter Design

▪ A filter is a two-port network used to control the frequency response at a certain

point in an RF or microwave system by providing transmission at frequencies

within the passband of the filter and attenuation in the stopband of the filter.

▪ Typical frequency responses include low-pass, high-pass, bandpass, and band-

reject characteristics.

▪ Applications can be found in virtually any type of RF or microwave

communication, radar, or test and measurement system.

▪ Filters designed using the image parameter method consist of a cascade of

simpler two-port filter sections to provide the desired cutoff frequencies and

attenuation characteristics but do not allow the specification of a particular

frequency response over the complete operating range. Thus, although the

procedure is relatively simple, the design of filters by the image parameter method

often must be iterated many times to achieve the desired results.



Microwave Filter Design

▪ A more modern procedure, called the insertion loss method, uses network

synthesis techniques to design filters with a completely specified frequency

response. The design is simplified by beginning with low-pass filter prototypes

that are normalized in terms of impedance and frequency. Transformations are

then applied to convert the prototype designs to the desired frequency range and

impedance level.

▪ Both the image parameter and insertion loss methods of filter design lead to

circuits using lumped elements (capacitors and inductors).

▪ For microwave applications such designs usually must be modified to employ

distributed elements consisting of transmission line sections. The Richards

transformation and the Kuroda identities provide this step.



Image Parameters for T- and π-Networks



Filter Design by the Image Parameter Method

Constant-k Filter Sections:

▪ First consider the T-network shown in figure. Intuitively, we can see that this is a

low-pass filter network because the series inductors and shunt capacitor tend to

block high-frequency signals while passing low-frequency signals.

Low-pass constant-k filter sections in T and π forms. (a) T-section. (b) π-section.



Constant-k Filter Sections

▪ We have 𝑍1 = 𝑗𝜔𝐿 and 𝑍2 = ൗ1 𝑗𝜔𝐶 , so the image impedance is

𝑍𝑖𝑇 = 𝑍1𝑍2 1 +
𝑍1
4𝑍2

=
𝑗𝜔𝐿

𝑗𝜔𝐶
1 +

𝑗𝜔𝐿

4
1
𝑗𝜔𝐶

=
𝐿

𝐶
1 −

𝜔2𝐿𝐶

4

▪ If we define a cutoff frequency 𝜔𝑐 as 𝜔𝑐 = Τ2 𝐿𝐶 and a nominal characteristic

impedance, 𝑅0 as 𝑅0 = Τ𝐿 𝐶 = 𝑘, where k is a constant, then we can rewrite 𝑍𝑖𝑇
as

𝑍𝑖𝑇 = 𝑅0 1 −
𝜔2

𝜔𝑐
2

▪ Then 𝑍𝑖𝑇 = 𝑅0 for 𝜔 = 0.



Constant-k Filter Sections

▪ The propagation factor is

𝑒𝛾 = 1 +
𝑍1
2𝑍2

+
𝑍1
𝑍2

+
𝑍1
2

4𝑍2
2 = 1 +

𝑗𝜔𝐿

2 ൗ1 𝑗𝜔𝐶

+
𝑗𝜔𝐿

ൗ1 𝑗𝜔𝐶

+
𝑗𝜔𝐿 2

4 ൗ1 𝑗𝜔𝐶

2

𝑒𝛾 = 1 −
𝜔2𝐿𝐶

2
+ −𝜔2𝐿𝐶 +

𝜔2𝐿𝐶 2

4
= 1 −

𝜔2𝐿𝐶

2
+ 𝜔2𝐿𝐶

𝜔2𝐿𝐶

4
− 1

▪ Since 𝜔𝑐 = Τ2 𝐿𝐶,

𝑒𝛾 = 1 −
2𝜔2

𝜔𝑐
2 +

2𝜔

𝜔𝑐

𝜔2

𝜔𝑐
2 − 1



Constant-k Filter Sections

Typical passband and stopband characteristics of the low-pass constant-k sections



Constant-k Filter Sections

Now consider two frequency regions:

▪ For 𝜔 < 𝜔𝑐 : This is the passband of the filter section. 𝑍𝑖𝑇 is real, 𝛾 is imaginary,

since
𝜔2

𝜔𝑐
2 − 1 is negative and 𝑒𝛾 = 1

▪ For 𝜔 > 𝜔𝑐 : This is the stopband of the filter section. 𝑍𝑖𝑇 is imaginary, 𝑒𝛾 is real

and −1 < 𝑒𝛾 < 0 (as seen from the limits as 𝜔 ⟶ 𝜔𝑐 and 𝜔 ⟶ ∞). The

attenuation rate for 𝜔 ≫ 𝜔𝑐 is 40 dB/decade.

▪ Typical phase and attenuation constants are sketched in previous figure. Observe

that the attenuation, α, is zero or relatively small near the cutoff frequency,

although α→∞ as ω→∞. This type of filter is known as a constant-k low-pass

prototype. There are only two parameters to choose (L and C), which are

determined by 𝜔𝑐, the cutoff frequency, and 𝑅0 , the image impedance at zero

frequency.



Constant-k Filter Sections

▪ The above results are valid only when the filter section is terminated in its image

impedance at both ports. This is a major weakness of the design because the

image impedance is a function of frequency, and is not likely to match a given

source or load impedance. This disadvantage, as well as the fact that the

attenuation is rather low near cutoff, can be remedied with the modified m-

derived sections.

High-pass constant-k filter sections in T and π forms. (a) T-section. (b) π-section.



m-Derived Filter Sections

▪ We have seen that the constant-k filter section suffers from the disadvantages of a

relatively slow attenuation rate past cutoff, and a nonconstant image impedance.

▪ The m-derived filter section is a modification of the constant-k section designed to

overcome these problems.



Development of an m-derived filter section from a constant-k section

(a) Constant-k section. (b) General m-derived section. (c) Final m-derived section























Microwave Filters
An ideal filter provides:

- Perfect transmission for all frequencies in certain passband region.

- Infinite attenuation in stopband region.

Typical filter responses are:

a. Low pass : Transmits all signals between zero frequency and some upper limit

and attenuates all frequencies above the cut off value 𝜔𝑐.

b. High pass : Transmits all frequencies above some lower cut off frequency and

attenuates all frequencies below the cut off value 𝜔𝑐.

c. Band pass : Transmits all frequencies in the range 𝜔1and 𝜔2 and attenuates all

frequencies outside the range.

d. Band reject : Attenuates signals over a band of frequencies



Microwave Filters

Filter design problems at microwave frequencies where distributed parameters must be

used is quite complicated.

Two commonly used low frequency filter synthesis techniques are:

a. The image parameter method: Filter with the required passband and stopband

characteristics can be synthesized, but without exact frequency characteristics over

each region.

b. The insertion loss method: A systematic way to synthesize the desired response

with a higher degree of control over the passband and stopband amplitude and

phase characteristics.



Design of Microwave Filters by Insertion Loss

Some of the design trade-offs for microwave filter synthesis using the

insertion loss method are:

1. A binomial response is used when obtaining a minimum insertion

loss is the priority.

2. A Chebyshev response satisfies the requirement for the sharp

cutoff.

3. A linear phase filter design is used in cases where the attenuation

rate can be sacrificed for a better phase response.



Characterization by Power Loss Ratio

The insertion loss or the power loss ratio

in a filter network can be defined as:

𝑃𝐿𝑅 =
Power available from the source

Power delivered to the load

=
𝑃𝑖𝑛
𝑃𝐿𝑜𝑎𝑑

=
1

1 − Γ 𝜔 2

The insertion loss in dB is given by

𝐼𝐿 = 10 log𝑃𝐿𝑅
Since Γ 𝜔 2 is an even function of 𝜔.

We can express Γ 𝜔 2 as a polynomial in

𝜔2.

Γ 𝜔 2 =
𝑀 𝜔2

𝑀 𝜔2 + 𝑁 𝜔2

where, 𝑀 and 𝑁 are real polynomials in

𝜔2.

∴ 𝑃𝐿𝑅=
1

1 −
𝑀 𝜔2

𝑀 𝜔2 + 𝑁 𝜔2

=
𝑀 𝜔2 + 𝑁 𝜔2

𝑁 𝜔2

∴ 𝑃𝐿𝑅= 1 +
𝑀 𝜔2

𝑁 𝜔2



Some Practical Filter Responses

Maximally flat: Such filters are also known

as binomial or Butterworth filters. For a low

pass filter, power loss ratio is specified as

𝑃𝐿𝑅 = 1 + 𝑘2
𝜔

𝜔𝑐

2𝑁

where, 𝑁 is the order of the filter and 𝜔𝑐 is

the cut off frequency.

The power loss at the band edge is 1 + 𝑘2.

For 𝜔 > 𝜔𝑐, the attenuation increases

monotonically with frequency.

For 𝜔 ≫ 𝜔𝑐,

𝑃𝐿𝑅 ≃ 𝑘2
𝜔

𝜔𝑐

2𝑁

The insertion loss increases at the rate

20N dB/decade.



Some Practical Filter Responses

Equal ripple: Such filter response is also

known as Chebyshev response. For a low

pass filter power loss ratio is given by

𝑃𝐿𝑅 = 1 + 𝑘2𝑇𝑁
2

𝜔

𝜔𝑐

For 𝜔 < 𝜔𝑐, 𝑇𝑁
2(

𝜔

𝜔𝑐
) will oscillate between

± 1.

The passband response has ripples of

amplitude 1 + 𝑘2.

For 𝜔 ≫ 𝜔𝑐,

𝑇𝑁
2

𝜔

𝜔𝑐
≃
1

2

2𝜔

𝜔𝑐

2𝑁

∴ 𝑃𝐿𝑅 ≃
𝑘2

4

2𝜔

𝜔𝑐

2𝑁

The insertion loss increases at the rate

20N dB/decade similar to binomial.

However, the insertion loss in

Chebyshev response is
(22𝑁)

4
greater

than binomial response at 𝜔 ≫ 𝜔𝑐 .



Some Practical Filter Responses

1 1.50.5

1 + 𝑘2

𝜔/𝜔𝑐

𝑃𝐿𝑅

Equal Ripple

Maximally flat

𝑁 = 3



Some Practical Filter Responses

Linear phase: In some applications, a linear

phase response is desirable in the passband.

A linear phase response can be achieved

with the following phase response

ϕ(ω) = 𝐴𝜔 1 + 𝑝
𝜔

𝜔𝑐

2𝑁

where, ϕ(ω) is the phase of the voltage

transfer function of the filter and 𝑝 is a

constant.

The group delay is defined as

𝜏𝑑 =
𝑑ϕ

𝑑𝜔

= 𝐴 1 + 𝑝 2𝑁 + 1
𝜔

𝜔𝑐

2𝑁

Group delay is a maximally flat

response



Steps involved in filter design by insertion loss method

Filter specifications

Low pass prototype design

Scaling and Conversion 

Implementation



Maximally Flat Low-Pass Filter Prototype 

Let the source impedance be 1Ω and

𝜔𝑐 = 1 rad/sec.

For 𝑁 = 2,

𝑃𝐿𝑅 = 1 + 𝜔4

and

𝑍𝑖𝑛 = 𝑗𝜔𝐿 +
𝑅 1 − 𝑗𝜔𝑅𝐶

1 + 𝜔2𝑅2𝐶2

Γ =
𝑍𝑖𝑛 − 1

𝑍𝑖𝑛 + 1

1 𝐿

C 𝑅

𝑍𝑖𝑛

∴ 𝑃𝐿𝑅=
1

1 − Γ 2
=

1

1 −
𝑍𝑖𝑛 − 1
𝑍𝑖𝑛 + 1

𝑍𝑖𝑛
∗ − 1

𝑍𝑖𝑛
∗ + 1

=
𝑍𝑖𝑛 + 1 2

2 𝑍𝑖𝑛 + 𝑍𝑖𝑛
∗



Maximally Flat Low-Pass Filter Prototype 

Now

𝑍𝑖𝑛 + 𝑍𝑖𝑛
∗ = 𝑗𝜔𝐿 +

𝑅 1 − 𝑗𝜔𝑅𝐶

1 + 𝜔2𝑅2𝐶2
− 𝑗𝜔𝐿 +

𝑅 1 + 𝑗𝜔𝑅𝐶

1 + 𝜔2𝑅2𝐶2
=

2𝑅

1 + 𝜔2𝑅2𝐶2

and

𝑍𝑖𝑛 + 1 2 = 𝑗𝜔𝐿 +
𝑅 1 − 𝑗𝜔𝑅𝐶

1 + 𝜔2𝑅2𝐶2
+ 1

2

=
𝑅

1 + 𝜔2𝑅2𝐶2
+ 1 + 𝑗 𝜔𝐿 −

𝜔𝑅2𝐶

1 + 𝜔2𝑅2𝐶2

2

=
𝑅

1 + 𝜔2𝑅2𝐶2
+ 1

2

+ 𝜔𝐿 −
𝜔𝑅2𝐶

1 + 𝜔2𝑅2𝐶2

2



Maximally Flat Low-Pass Filter Prototype 

∴ 𝑃𝐿𝑅=
𝑍𝑖𝑛 + 1 2

2 𝑍𝑖𝑛 + 𝑍𝑖𝑛
∗

=
1 + 𝜔2𝑅2𝐶2

4𝑅

𝑅

1 + 𝜔2𝑅2𝐶2
+ 1

2

+ 𝜔𝐿 −
𝜔𝑅2𝐶

1 + 𝜔2𝑅2𝐶2

2

=
1

4𝑅
𝑅2 + 2𝑅 + 1 + 𝜔2𝑅2𝐶2 + 𝜔2𝐿2 + 𝜔4𝐿2𝑅2𝐶2 − 2𝜔2𝐿𝐶𝑅2

= 1 +
1

4𝑅
1 − 𝑅 2 + 𝜔2 𝑅2𝐶2 + 𝐿2 − 2𝐿𝐶𝑅2 +𝜔4𝐿2𝑅2𝐶2

On comparing with 𝑃𝐿𝑅 = 1 + 0 𝜔2 + (1)𝜔4, we get

1 − 𝑅 = 0 ⇒ 𝑅 = 1,
𝐶2 + 𝐿2 − 2𝐿𝐶 = 0 ⇒ 𝐿 − 𝐶 2 = 0 ⇒ 𝐿 = 𝐶

and

𝐿2𝑅2𝐶2

4𝑅
= 1 ⇒

𝐿2𝐶2

4
= 1 ⇒

𝐶2𝐶2

4
= 1 ⇒ 𝐿 = 𝐶 = 2



Ladder circuit for a lowpass prototype

𝑅0 = 𝑔0 = 1

𝐶1 = 𝑔1

𝐿2 = 𝑔2

𝐶3 = 𝑔3 𝑔𝑁+1

𝐿1 = 𝑔1 𝐿3 = 𝑔3

𝐺0 = 𝑔0 = 1 𝐶1 = 𝑔2 𝑔𝑁+1

Prototype beginning 
with a shunt element 

Prototype beginning 
with a series element 



Element Values for Maximally Flat Low-Pass Filter Prototypes 
𝑔0 = 1, 𝜔𝑐 = 1

N 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6

1 2.0000 1.0000

2 1.4142 1.4142 1.0000

3 1.0000 2.0000 1.0000 1.0000

4 0.7654 1.8478 1.8478 0.7654 1.0000

5 0.6180 1.6180 2.0000 1.6180 0.6180 1.0000

For practical filter, it will be necessary to determine the  order of the filter. This is 
usually dictated by a specification on the insertion loss at some frequency in the 
stop-band of the filter. 



Impedance and frequency scaling
The prototype filter has 𝑅𝑠 = 1and 𝜔𝑐 = 1. Also for a maximally flat 
response, the prototype has  𝑅𝐿 = 1

A source resistance of 𝑅0 can be obtained by multiplying all the impedances
of the prototype design by 𝑅0
The change of cutoff frequency from unity to 𝜔𝑐 requires scaling of frequency
dependence of filter which is accomplished by replacing 𝜔 by Τ𝜔 𝜔𝑐

Therefore, when both impedance and frequency scaling is applied,

𝐿𝑘
′ =

𝑅0𝐿𝑘

𝜔𝑐
𝐶𝑘
′=

𝐶𝑘

𝑅0𝜔𝑐

Note that with impedance scaling, the scaled values of source and load
resistances become 𝑅0 and 𝑅0𝑅𝐿



Example: Design of a Low Pass Butterworth Filter

Let us consider a maximally flat filter that has cutoff frequency of 2 GHz and
the filter provides at least 15 attenuation at 4 GHz. The source and load
impedances are 50Ω

First we need to determine the order of the filter. From the expression of 𝑃𝐿𝑅,
we find that at angular frequency 𝜔, the attenuation of the filter in dB is

10 log10 1 +
𝜔

𝜔𝑐

2𝑁

Therefore, 1.5 = log10 1 + 22𝑁 . So we get 𝑁 = 2.47 i.e. we use 𝑁 = 3

From the table, 𝑔1 = 1 𝑔2 = 2 𝑔3= 1



Example: Continued

50Ω

𝐶1

𝐿2

𝐶3 50Ω
𝐶1=1.5915 pF

𝐿2=7.9577 nH

𝐶3=1.5915 pF

After impedance and frequency scaling 



Chebyshev Polynomials

𝑛th order Chebyshev polynomial is a
polynomial of degree n and denoted
by 𝑇𝑛 𝑥

𝑇1 𝑥 = 𝑥
𝑇2 𝑥 = 2𝑥2 − 1

𝑇𝑛 𝑥 = 2𝑥𝑇𝑛−1 𝑥 − 𝑇𝑛−2(𝑥)

𝑛 = 1
𝑛 = 2

𝑛 = 3

𝑛 = 4

𝑇𝑛(x)

𝑥



Equal Ripple Low-Pass Filter Prototype 

Let the cutoff frequency be 𝜔𝑐 = 1
rad/sec.

𝑃𝐿𝑅 = 1 + 𝑘2𝑇𝑁
2 𝜔

Since,

𝑇𝑁 0 = ቊ
0 for N odd
±1 for N even

Therefore, at 𝜔 = 0,

𝑃𝐿𝑅 = ቊ
1 for N odd
1 + 𝑘2 for N even

As

𝑇2 𝑥 = 2𝑥2 − 1
For 𝑁 = 2,

𝑃𝐿𝑅 = 1 + 𝑘2𝑇2
2 𝜔

= 1 + 𝑘2 2𝜔2 − 1 2

= 1 + 𝑘2 4𝜔4 − 4𝜔2 + 1



Equal Ripple Low-Pass Filter Prototype 

For the two element network, 

we have seen

𝑃𝐿𝑅 = 1 +
1

4𝑅
1 − 𝑅 2 + 𝜔2 𝑅2𝐶2 + 𝐿2 − 2𝐿𝐶𝑅2 + 𝜔4𝐿2𝑅2𝐶2

Also 𝑃𝐿𝑅 = 1 + 𝑘2𝑇2
2 𝜔 = 1 + 𝑘2 4𝜔4 − 4𝜔2 + 1

For 𝜔 = 0,

𝑃𝐿𝑅 = 1 + 𝑘2 = 1 +
1

4𝑅
1 − 𝑅 2

4𝑘2 =
1−𝑅 2

4𝑅
⇒ 𝑅 = 1 + 2𝑘2 ± 2𝑘 1 + 𝑘2 (for 𝑁 even)

1 𝐿

C 𝑅

𝑍𝑖𝑛



Equal Ripple Low-Pass Filter Prototype 
Equating the two expressions for 𝑃𝐿𝑅

1 + 𝑘2 4𝜔4 − 4𝜔2 + 1 = 1 +
1

4𝑅
1 − 𝑅 2 + 𝜔2 𝑅2𝐶2 + 𝐿2 − 2𝐿𝐶𝑅2 + 𝜔4𝐿2𝑅2𝐶2

We get

−4𝑘2=
𝑅2𝐶2 + 𝐿2 − 2𝐿𝐶𝑅2

4𝑅
and

4𝑘2 =
𝐿2𝑅2𝐶2

4𝑅

Note that value for R (for N even) is not unity, so there will be an impedance mismatch if

the load has a unity (normalized) impedance; this can be corrected with a quarter-wave

transformer, or by using an additional filter element to make N odd. For odd N, it can be

shown that R = 1.

The values of 𝐿
and 𝐶 can be

obtained by

solving these

equations.



Element Values for Equi-ripple Low-Pass Filter Prototypes 
𝑔0 = 1, 𝜔𝑐 = 1 , 0.5 dB ripple

N 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6

1 0.6986 1.0000

2 1.4029 0.7071 1.9841

3 1.5963 1.0967 1.5963 1.0000

4 1.6703 1.1926 2.3661 0.8491 1.9841

5 1.7058 1.2296 2.5408 1.2296 1.7058 1.0000

For practical filter, it will be necessary to determine the  order of the filter. This is 
usually dictated by a specification on the insertion loss at some frequency in the 
stop-band of the filter. 



Low Pass to High Pass Transformation
The low pass prototype filter designs can be

transformed to high pass, band pass or band

reject response.

Loss pass to high pass transformation is

achieved by the frequency substitution:

−𝜔𝑐

𝜔
for 𝜔

When this transformation is applied

𝑗𝜔𝐿𝑘 becomes −𝑗
𝜔𝑐

𝜔
𝐿𝑘 =

1

𝑗𝜔𝐶𝑘
′ , where 𝐶𝑘

′ =
1

𝜔𝑐𝐿𝑘

and

𝑗𝜔𝐶𝑘 becomes −𝑗
𝜔𝑐

𝜔
𝐶𝑘 =

1

𝑗𝜔𝐿𝑘
′ , where 𝐿𝑘

′ =
1

𝜔𝑐𝐶𝑘

After performing impedance scaling

𝐶𝑘
′ =

1

𝑅0𝜔𝑐𝐿𝑘
and

𝐿𝑘
′ =

𝑅0
𝜔𝑐𝐶𝑘

𝜔10−1 −𝜔𝑐 𝜔𝑐

𝑃𝐿𝑅
𝑃𝐿𝑅



Low Pass to Band Pass and Band Stop Transformation

For LPF to BPF

𝜔 ←
𝜔0

𝜔2 − 𝜔1

𝜔

𝜔0
−
𝜔0

𝜔

=
1

∆

𝜔

𝜔0
−
𝜔0

𝜔

where,

∆=
𝜔2 − 𝜔1

𝜔0

Simpler equations are

obtained when

𝜔0 = 𝜔1𝜔2

𝜔10−1 −𝜔2 −𝜔1

𝑃𝐿𝑅

𝜔1 𝜔2 𝜔

−𝜔0 𝜔0

−𝜔2 −𝜔1

𝑃𝐿𝑅

𝜔1 𝜔2 𝜔

−𝜔0 𝜔0

Band Pass 

Band Stop 



Low Pass to Band Pass and Band Stop Transformation

𝜔10−1
−𝜔2 −𝜔1

𝑃𝐿𝑅

𝜔1 𝜔2 𝜔

−𝜔0 𝜔0

−𝜔2 −𝜔1

𝑃𝐿𝑅

𝜔1 𝜔2 𝜔

−𝜔0 𝜔0

𝑘 is transformed to a

series LC circuit with

𝐿𝑘
′ =

𝐿𝑘
∆𝜔0

𝐶𝑘
′ =

∆

𝜔0𝐿𝑘

And the shunt capacitor 𝐶𝑘 is transformed to

a shunt LC circuit with elements

𝐿𝑘
′ =

∆

𝜔0𝐶𝑘
𝐶𝑘
′ =

𝐶𝑘
∆𝜔0

Band Pass 

Band Stop 

When this transformation is applied,

A series inductor 𝐿



Low Pass to Band Pass and Band Stop Transformation

For LPF to Band Stop

𝜔 ← ∆
𝜔

𝜔0
−
𝜔0

𝜔

−1

𝜔10−1
−𝜔2 -𝜔1

𝑃𝐿𝑅

𝜔1 𝜔2 𝜔

−𝜔0 𝜔0

−𝜔2 −𝜔1

𝑃𝐿𝑅

𝜔1 𝜔2 𝜔

−𝜔0 𝜔0

A series inductors are transformed to parallel

LC circuit with

𝐿𝑘
′ =

∆𝐿𝑘
𝜔0

𝐶𝑘
′ =

1

𝜔0∆𝐿𝑘
And the shunt capacitors are transformed to a

series LC circuit with elements

𝐿𝑘
′ =

1

𝜔0∆𝐶𝑘
𝐶𝑘
′ =

∆𝐶𝑘
𝜔0

Band Pass 

Band Stop 



C

L

Low Pass

𝐿∆

𝜔0

1

𝜔0𝐿∆

𝐶∆

𝜔0

1

𝜔0𝐶∆

Band Stop

𝐿

𝜔0∆

∆

𝜔0𝐿

∆

𝜔0𝐶
𝐶

𝜔0∆

Band Pass

1

𝜔𝑐L

1

𝜔𝑐C

High Pass

Summary of prototype filter transformations



Filter Implementation
 Lumped element filter design discussed so far works well at lower frequencies.

 At higher RF frequencies lumped element inductors and capacitors are generally

available for limited range of values.

 At higher microwave frequencies, such elements are difficult to implement.

 Distributed elements such as stubs are often used to approximate the lumped

elements.

 Conversion of lumped element to equivalent transmission line sections can be

done using Richards’s transformation.

 Moreover, at microwave frequencies the spacing between the filter elements are

also to be considered.

 Kuroda’s identities are used to physically separate filter elements by various

transmission line sections.



Filter Implementation
Tutorial



Steps to design a Microstrip Filter

Tutorial : Microstrip Low pass Filter 2



Design Goal

Tutorial : Microstrip Low pass Filter 3



1.Find the order of Filter (N)

1

Tutorial : Microstrip Low pass Filter 4



2.Apply Richard’s Transformation

Tutorial : Microstrip Low pass Filter 5



2.Apply Richard’s Transformation

Tutorial : Microstrip Low pass Filter 6



3.Apply Kuroda’s Identities

Tutorial : Microstrip Low pass Filter 7



3.Apply Kuroda’s Identities

Tutorial : Microstrip Low pass Filter 8



3.Apply Kuroda’s Identities

Tutorial : Microstrip Low pass Filter 9



3.Apply Kuroda’s Identities

Tutorial : Microstrip Low pass Filter 10



3.Apply Kuroda’s Identities

Tutorial : Microstrip Low pass Filter 11



3.Apply Kuroda’s Identities

Tutorial : Microstrip Low pass Filter 12



4.Denormalization to 50 ohms
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Attenuation Profile

Tutorial : Microstrip Low pass Filter 14



CST MWS Simulation
Front View

Tutorial : Microstrip Low pass Filter 15



CST MWS Simulation
Back View

Tutorial : Microstrip Low pass Filter 16



CST MWS Simulation
Transmission Co-efficient S(2,1)(Linear)

Tutorial : Microstrip Low pass Filter 17



CST MWS Simulation
Transmission Co-efficient S(2,1) dB

Tutorial : Microstrip Low pass Filter 18



 

BASIC CHARACTERISTICS OF MIXERS 

Mixers are commonly used to multiply signals of different frequencies in an effort to achieve frequency 

translation. The motivation for this translation stems from the fact that filtering out a particular RF signal 

channel centered among many densely populated, narrowly spaced neighboring channels would require 

extremely high Q-filters. This task , however, becomes much more   manageable if the Rf signal carrier 

frequency can be reduced or down-converted within the communication system. Perhaps one of the best 

known systems is the down-conversion in a heterodyne receiver, schematically depicted in the following 

figure. 

 

Heterodyne receiver system incorporating a mixer  

Here the received RF signal is, after preamplification in a low-noise amplifier (LNA), supplied to a mixer 

whose task is to multiply the input signal of center frequency fRF with a local oscillator (LO) frequency fLO. 

The signal obtained after the mixer contains the frequencies fRF ± fLO , of which after low-pass(LP) filtering, 

the low frequency component fRF − fLO, known as the intermediate frequency (IF), is selected for further 

processing. The two key ingredients constituting a mixer are the combiner and detector. The combiner can 

be implemented through the use of 900 or 1800 directional coupler. The detector may employ non-linear 

devices like diode or BJT or MESFET. 

Basic mixer concept: two input frequencies are used to create new frequencies at the output of the system 

Above figure depicts the basic system arrangement of a mixer connected to an RF signal, VRF(t), and local 

oscillator signal, VLO(t), which is also known as the pump signal. It is seen that the RF input voltage signal is 

combined with the LO signal and supplied to a semiconductor device with a nonlinear characteristic at its 

output side driving a current into the load.  



 

Both diode and BJT have an exponential transfer characteristic, as expressed for instance by the Shockley’s 

diode equation as follows: 

𝐼 = 𝐼0 (𝑒
𝑉

𝑉𝑇
⁄ − 1) 

Alternatively, for a MESFET we have approximately a square behavior: 

𝐼(𝑉) = 𝐼𝐷𝑆𝑆 (1 − 𝑉
𝑉𝑇0

⁄ )
2

 

where the subscripts denoting drain current and gate-source voltage are omitted for simplicity. The input 

voltage is represented as sum of RF signal 𝑣𝑅𝐹 = 𝑉𝑅𝐹 cos (𝜔𝑅𝐹𝑡) and the LO signal 𝑣𝐿𝑂 = 𝑉𝐿𝑂 cos (𝜔𝐿𝑂𝑡) 

and a bias VQ; that is 

𝑉 = 𝑉𝑄 + 𝑉𝑅𝐹 cos(𝜔𝑅𝐹𝑡) + 𝑉𝐿𝑂 cos (𝜔𝐿𝑂𝑡) 

This voltage is applied to the nonlinear device whose current output characteristic can be found via a Taylor 

series expansion around the Q-point: 

𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ 

𝐼(𝑉) = 𝐼𝑄 + 𝑉 (
𝑑𝐼

𝑑𝑉
)|

𝑉𝑄

+
1

2
𝑉2 (

𝑑2𝐼

𝑑𝑉2
)|

𝑉𝑄

+ ⋯ = 𝐼𝑄 + 𝑉𝐴 + 𝑉2𝐵 + ⋯ 

Where the constants A and B refer to  (
𝑑𝐼

𝑑𝑉
)|

𝑉𝑄

and (
𝑑2𝐼

𝑑𝑉2)|
𝑉𝑄

, respectively. Neglecting the constant bias VQ 

and IQ, 

𝐼(𝑉) = 𝑉𝐴 + 𝑉2𝐵 + ⋯ 

𝐼(𝑉) = 𝐴 {𝑉𝑅𝐹 cos(𝜔𝑅𝐹𝑡) + 𝑉𝐿𝑂 cos(𝜔𝐿𝑂𝑡)} + 𝐵 {𝑉𝑅𝐹 cos(𝜔𝑅𝐹𝑡) + 𝑉𝐿𝑂 cos (𝜔𝐿𝑂𝑡)}2 + ⋯ 

 

 

𝐼(𝑉) = 𝐴 {𝑉𝑅𝐹 cos(𝜔𝑅𝐹𝑡) + 𝑉𝐿𝑂 cos(𝜔𝐿𝑂𝑡)}

+ 𝐵 {𝑉𝑅𝐹
2 cos2(𝜔𝑅𝐹𝑡) + 𝑉𝐿𝑂

2 cos2(𝜔𝐿𝑂𝑡) + 2 𝑉𝑅𝐹 cos(𝜔𝑅𝐹𝑡) 𝑉𝐿𝑂 cos(𝜔𝐿𝑂𝑡)} 

The key lies in the last term 

𝐼(𝑉) = ⋯ + 2𝐵 𝑉𝑅𝐹 𝑉𝐿𝑂 cos(𝜔𝑅𝐹𝑡) cos(𝜔𝐿𝑂𝑡) 

𝐼(𝑉) = ⋯ + 𝐵 𝑉𝑅𝐹 𝑉𝐿𝑂{cos[(𝜔𝑅𝐹+𝜔𝐿𝑂)𝑡] + cos[(𝜔𝑅𝐹−𝜔𝐿𝑂)𝑡]} 

This expression makes clear that the non-linear action of the diode or transistor can generate new frequency 

components of the form 𝜔𝑅𝐹 ± 𝜔𝐿𝑂. It is also noted that the amplitudes are multiplied by   𝑉𝑅𝐹 𝑉𝐿𝑂, and B is 

a device dependent factor. 



 

 

Spectral representation of mixing process 

 

 

Problem of image frequency mapping 



 

TYPES OF MIXERS 

Single-Ended Mixer 

▪ RF and LO sources are supplied to an appropriately biased diode followed by a resonator circuited 

tuned to the desired IF. 

 
▪ Since LO and RF signals are not electrically isolated. There is a potential danger that the LO signal can 

interfere with the RF reception, possibly even reradiating portions of the LO energy through the 

receiving antenna. 

▪ Following figure shows an improved design involving a FET, which, unlike the diode, is able to provide 

gain to the incoming RF and LO signals. 

 

▪ FET realization allows not only allows for LO and RF isolation but also provides a signal gain and thus 

minimizes conversion loss 

▪ Conversion Loss (CL) of a mixer is generally defined in dB as the ratio of supplied input power PRF 

over the obtained IF power PIF. When dealing with BJTs and FETs, it is preferable to specify a 

conversion gain (CG) defined as the inverse of the power ratio. 

CL = 10log (
𝑃𝑅𝐹

𝑃𝐼𝐹
) 

▪ Noise Figure(F) of a mixer is defined as 

𝐹 =
𝑃𝑛𝑜𝑢𝑡

𝐶𝐺 𝑃𝑛𝑖𝑛

 

Where CG being the conversion gain and 𝑃𝑛𝑜𝑢𝑡
 , 𝑃𝑛𝑖𝑛

 the noise power at the output due to the RF     

signal input (at RF) and the total noise power at the output (at IF).   

▪ FET generally has a lower noise figure than a BJT, and because of a nearly quadratic transfer 

characteristic, the influence of higher-order nonlinear terms is minimized.  



 

▪ BJT finds application when high conversion gain and low voltage bias conditions are needed.  

Single-Balanced Mixer 

▪ Single-ended mixers are rather easy to construct circuits and the main disadvantage of these designs 

is the difficulty associated with providing LO energy while maintaining separation between LO, RF, 

and IF signals for broadband applications 

▪ Balanced dual-diode or dual transistor mixer in conjunction with a hybrid coupler offers the ability to 

conduct such broadband operations. Moreover, it provides further advantages related to noise 

suppression and spurious mode rejection 

▪ Spurs arise in oscillators and amplifiers due to parasitic resonances and non-linearities and are only 

suppressed by the front-end. Thermal noise can critically raise the noise floor in the receiver. 

▪ Following figure shows the basic mixer design featuring a quadratic coupler and a dual-diode detector 

followed by a capacitor acting as summation point. 

 

▪ This design provides excellent VSWR and is capable of suppressing a considerable amount of noise 

because the opposite diode arrangement in conjunction with the 900 phase shift provides a good 

degree of noise cancellation. 

MICROWAVE NETWORKS 

A microwave network is formed when several microwave devices and components such as sources, 

attenuators, resonators, filters, amplifiers, etc., are coupled by transmission lines or waveguides for the 

desired transmission of a microwave signal. The point of interconnection of two or more devices is called a 

junction. 

For a low-frequency network, a port is a pair of terminals whereas for a microwave network, a port is a 

reference plane transverse to the length of the microwave transmission line or waveguide. At low 

frequencies, the physical length of the network is much smaller than the wavelength of the signal 

transmitted. Therefore, the measurable input and output variables are voltage and current which can be 

related in terms of the impedance Z-parameters, or admittance Y-parameters, or hybrid h-parameters, or 

ABCD parameters. For a two-port network as shown schematically in following figure, these relationships 

are given by 



 

 

Basic voltage and current definitions for a two-port network 

 

 

 

 

 

 

 

 

At microwave frequencies, the physical length of the component or line is comparable to or much larger 

than the wavelength. Furthermore, the voltage and current cannot be uniquely defined at a given point in a 

single conductor waveguide.  

 

Besides this constraint, measurement of Z, Y, h and ABCD parameters is difficult at microwave frequencies 

due to the following reasons: 

1. Non-availability of terminal voltage and current measuring equipment even in the cases of TEM lines 

(coaxial, strip and microstrip lines) where voltage and current can be uniquely defined. 

2. Short-circuit and open-circuit conditions are not easily achieved over a wide range of frequencies. 

3. Presence of active devices makes the circuit unstable or open and short-circuit. 

 

Therefore, microwave circuits are analysed using Scattering or S-parameters which linearly relate the 

amplitudes of scattered (reflected or transmitted) waves with those of incident waves. However, many of 



 

the circuit-analysis techniques and circuit properties that are valid at low frequencies are also valid for 

microwave circuits. 

 

 

 



 

 

 

 



 

Meaning of S-parameters 

S11  represents Input Reflection Coefficient; S21  indicates Forward Voltage Gain; S12 represents Reverse 

Voltage Gain; S22  indicates Output Reflection Coefficient 

SIGNAL FLOW CHART MODELING 

The analysis of RF networks and their overall interconnection is greatly facilitated through signal flow charts 

as commonly used in system and control theory. Even complicated networks are easily reduced to input 

output relations in which the reflection and transmission coefficients play integral parts. 

 
Terminated transmission line segment with incident and reflected power wave description. (a) 

Conventional form, and (b) Signal flow form 

 

Generic source node (a), receiver node (b), and the associated branch connection (c). 

 

 

Terminated transmission line with source. (a) conventional form, (b) signal flow form, and (c) simplified 

signal flow form 



 

 

A self-loop that collapses to a single branch 

 

 

Table: Signal Flowgraph Building Blocks 

 

 

 

 



 

AMPLIFIER POWER RELATIONS 

RF SOURCE 

 

Generic amplifier system 

Let us examine the above figure in terms of its power flow relations under the assumptions that the two 

matching networks are included in the source and load impedances. This simplifies our system to the  

configuration shown below: 

 

Source and load connected to a single-stage amplifier network 

 

 



 

The starting point of our power analysis is the RF source connected to the amplifier network. The source 

voltage is written as 

𝑏𝑆 = 𝑏1
′ (1 − Γ𝑖𝑛Γ𝑆)                                                                                             (1) 

The incident power wave associated with 𝑏1
′  is given as 

𝑃𝑖𝑛𝑐 =
|𝑏1

′ |2

2
=

1

2

|𝑏𝑆|2

|1 − Γ𝑖𝑛Γ𝑆|2
                                                                            (2) 

which is the power launched toward the amplifier. The actual input power 𝑃𝑖𝑛 observed at the input 

terminal of the amplifier is composed of the incident and reflected power waves. With the aid of the input 

reflection coefficient  Γ𝑖𝑛 we can therefore write: 

𝑃𝑖𝑛 = 𝑃𝑖𝑛𝑐(1 − |Γ𝑖𝑛|2) =
1

2
  

|𝑏𝑆|2

|1 − Γ𝑖𝑛Γ𝑆|2
 (1 − |Γ𝑖𝑛|2)                                  (3) 

The maximum power transfer from source to the amplifier is achieved if the input impedance is complex 

conjugate matched 𝑍𝑖𝑛 = 𝑍𝑆
∗ or in terms of the reflection coefficients , if Γ𝑖𝑛 = Γ𝑆

∗. Under maximum power 

transfer condition, we define available power 𝑃𝐴 as 

  

𝑃𝐴 = 𝑃𝑖𝑛|Γ𝑖𝑛=Γ𝑆
∗ =

1

2
 

|𝑏𝑆|2

|1 − Γ𝑖𝑛Γ𝑆|2
 (1 − |Γ𝑖𝑛|2)  |

Γ𝑖𝑛=Γ𝑆
∗

=     
1

2
 

|𝑏𝑆|2

1 − |Γ𝑆|2
                            (4) 

 

Transducer Power Gain 

The Transducer Power Gain quantifies the gain of the amplifier placed between source and load. 

𝐺𝑇 =
𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒
=

𝑃𝐿

𝑃𝐴
 

Or with 𝑃𝐿 =
1

2
 |𝑏2|2(1 − |Γ𝐿|2) we obtain 

𝐺𝑇 =
𝑃𝐿

𝑃𝐴
=     

|𝑏2|2

|𝑏𝑆|2
 (1 − |Γ𝐿|2) (1 − |Γ𝑆|2)                                                         (5) 

In this expression, the ratio  𝑏2 𝑏𝑆⁄  has to be determined. With the help of our signal flow graph discussion 

in above section and based on the following figure, we establish 

𝑏2 =
𝑆21𝑎1

1 − 𝑆22Γ𝐿
                                                                                                          (6𝑎) 

𝑏𝑆 = [1 − (𝑆11 +
𝑆21𝑆12Γ𝐿

1 − 𝑆22Γ𝐿
) Γ𝑆] 𝑎1                                                                     (6𝑏) 

The required ratio is therefore given by  

𝑏2

𝑏𝑆
=

𝑆21

(1 − 𝑆22Γ𝐿)(1 − 𝑆11Γ𝑆) − 𝑆21𝑆12Γ𝐿Γ𝑆
                                                                     (7) 

 



 

 

Step-by-step simplification to determine the ratio  
𝒃𝟐

𝒃𝑺
 

 



 

Inserting equation (7) into equation (5) results in 

  

𝐺𝑇 =
(1 − |Γ𝐿|2)   |𝑆21|2 (1 − |Γ𝑆|2)

|(1 − 𝑆22Γ𝐿)(1 − 𝑆11Γ𝑆) − 𝑆21𝑆12Γ𝐿Γ𝑆|2
                                                       (8) 

Which can be rearranged by defining the input and output reflection coefficients 

Γ𝑖𝑛 = 𝑆11 +
𝑆21𝑆12Γ𝐿

1 − 𝑆22Γ𝐿
                                                                                                  (9𝑎) 

Γ𝑜𝑢𝑡 = 𝑆22 +
𝑆12𝑆21Γ𝑆

1 − 𝑆11Γ𝑆
                                                                                                  (9𝑏) 

With these two definitions, two more transducer power gain expressions can be derived. First, by incorporating 

equation (9a) into equation (8), it is seen that 

𝐺𝑇 =
(1 − |Γ𝐿|2)   |𝑆21|2 (1 − |Γ𝑆|2)

|1 − Γ𝑆Γ𝑖𝑛|2|1 − 𝑆22Γ𝐿|2
                                                       (10) 

Second, using equation(9b) into equation (8), it is seen that 

𝐺𝑇 =
(1 − |Γ𝐿|2)   |𝑆21|2 (1 − |Γ𝑆|2)

|1 − Γ𝐿Γ𝑜𝑢𝑡|2|1 − 𝑆11Γ𝑆|2
                                                       (11) 

An often employed approximation for the transducer power gain is the so-called unilateral power gain, 𝐺𝑇𝑈, which 

neglects the feedback effect of the amplifier(𝑆21 = 0). This simplifies equation (11) to  

𝐺𝑇𝑈 =
(1 − |Γ𝐿|2)   |𝑆21|2 (1 − |Γ𝑆|2)

|1 − Γ𝐿𝑆22|2|1 − 𝑆11Γ𝑆|2
                                                       (12) 

 

Additional Power Relations 

Available power gain for load side matching is defined as 

𝐺𝐴 = 𝐺𝑇|Γ𝐿=Γ𝑜𝑢𝑡
∗ =

𝑝𝑜𝑤𝑒𝑟 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟

𝑝𝑜𝑤𝑒𝑟 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒
 

With the aid of equation (11), 

𝐺𝐴 =
   |𝑆21|2 (1 − |Γ𝑆|2)

(1 − |Γ𝑜𝑢𝑡|2) |1 − 𝑆11Γ𝑆|2
                                                       (13) 

Power gain (operating power gain) is defined as  

𝐺 =
𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑

𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟
=

𝑃𝐿

𝑃𝑖𝑛
=

𝑃𝐿

𝑃𝐴
 .

𝑃𝐴

𝑃𝑖𝑛
= 𝐺𝑇 .

𝑃𝐴

𝑃𝑖𝑛
  

Using equations (3), (4) and (10) 

𝐺 =
(1 − |Γ𝐿|2)   |𝑆21|2 

(1 − |Γ𝑖𝑛|2) |1 − 𝑆22Γ𝐿|2
                                                       (14) 

 

 

 



 

Example: Power relations or an RF amplifier 

An RF Amplifier has the following S-parameters:  

𝑆11 = 0.3∠−700 , 𝑆12  = 0.2∠−100, 𝑆21 = 3.5∠850 𝑎𝑛𝑑  𝑆22 = 0.4∠−450. Furthermore, the input side of 

the amplifier is connected to a voltage source with  𝑉𝑆 = 5𝑉∠00 and source impedance 𝑍𝑆 = 40Ω. The 

output is utilized to drive an antenna which has an impedance of 𝑍𝐿 = 73Ω. Assuming that the S-parameters 

of the amplifier are measured with reference to a 𝑍0 = 50Ω characteristic impedance, find the following 

quantities: 

(a) Transducer gain 𝐺𝑇, Unilateral transducer gain 𝐺𝑇𝑈, available gain 𝐺𝐴, operating power gain G and 

(b) Power delivered to the load 𝑃𝐿, available power 𝑃𝐴 and incident power to the amplifier 𝑃𝑖𝑛𝑐  

Solution: 

Γ𝑆 =
𝑍𝑆 − 𝑍0

𝑍𝑆 + 𝑍0
= −0.111 

Γ𝐿 =
𝑍𝐿 − 𝑍0

𝑍𝐿 + 𝑍0
= 0.187 

Γ𝑖𝑛 = 𝑆11 +
𝑆21𝑆12Γ𝐿

1 − 𝑆22Γ𝐿
  = 0.146 − 𝑗0.151                                                                                              

Γ𝑜𝑢𝑡 = 𝑆22 +
𝑆12𝑆21Γ𝑆

1 − 𝑆11Γ𝑆
 = 0.265 − 𝑗0.358                                                         

𝐺𝑇 =
(1 − |Γ𝐿|2)   |𝑆21|2 (1 − |Γ𝑆|2)

|1 − Γ𝐿Γ𝑜𝑢𝑡|2|1 − 𝑆11Γ𝑆|2
= 12.56 𝑜𝑟 10.99𝑑𝐵                                                   

𝐺𝑇𝑈 =
(1 − |Γ𝐿|2)   |𝑆21|2 (1 − |Γ𝑆|2)

|1 − Γ𝐿𝑆22|2|1 − 𝑆11Γ𝑆|2
= 12.67 𝑜𝑟 11.03𝑑𝐵 

𝐺𝐴 =
   |𝑆21|2 (1 − |Γ𝑆|2)

(1 − |Γ𝑜𝑢𝑡|2) |1 − 𝑆11Γ𝑆|2
= 14.74 𝑜𝑟 11.68 𝑑𝐵 

𝐺 =
(1 − |Γ𝐿|2)   |𝑆21|2 

(1 − |Γ𝑖𝑛|2) |1 − 𝑆22Γ𝐿|2
= 13.74 𝑜𝑟 11.38 𝑑𝐵 

𝑃𝑖𝑛𝑐 =
1

2

|𝑏𝑆|2

|1 − Γ𝑖𝑛Γ𝑆|2
=  

1

2
 

𝑍0

(𝑍
𝑆

+ 𝑍0)2  
|𝑉𝑆|2

|1 − Γ𝑖𝑛Γ𝑆|2
= 74.7 𝑚𝑊 

𝑃𝑖𝑛𝑐(𝑑𝐵𝑚) = 10 log [
𝑃𝑖𝑛𝑐

1𝑚𝑊
] = 18.73 𝑑𝐵𝑚 

𝑃𝐴 =   
1

2
 

|𝑏𝑆|2

1 − |Γ𝑆|2
=

1

2
 

𝑍0

(𝑍
𝑆

+ 𝑍0)2  
|𝑉𝑆|2

1 − |Γ𝑆|2
= 78.1 𝑚𝑊 𝑜𝑟 18.93 𝑑𝐵𝑚 

𝑃𝐿(𝑑𝐵𝑚) =  𝑃𝐴(𝑑𝐵𝑚) + 𝐺𝑇(𝑑𝐵𝑚) = 29.92 𝑑𝐵𝑚 



 

STABILITY of Amplifier 

 
 A single-stage microwave transistor amplifier can be modelled by the circuit shown in  

Figure, where matching networks are used on both sides of the transistor to transform the input 

and output impedance Z0 to the source and load impedances ZS and ZL . 

 In the circuit shown in Figure, oscillation is possible if either the input or output port 

impedance has a negative real part; this would then imply that |Γ𝑖𝑛| > 1 or |Γ𝑜𝑢𝑡|  > 1. Because 

Γ𝑖𝑛 and Γ𝑜𝑢𝑡  depend on the source and load matching networks, the stability of the amplifier 

depends on Γ𝑆 and Γ𝐿 as presented by the matching networks.  

 

Two types of stability:  

(i)Unconditional stability:  

The network is unconditionally stable if |Γ𝑖𝑛| < 1 and |Γ𝑜𝑢𝑡|  < 1 for all passive source and load 

impedances (i.e., |Γ𝑆| < 1 or |Γ𝐿|  < 1 ).  

(ii)Conditional stability: 

 The network is conditionally stable if |Γ𝑖𝑛| < 1 and |Γ𝑜𝑢𝑡|  < 1  only for a certain range of 

passive source and load impedances. This case is also referred to as potentially unstable. 

 

 Note that the stability condition of an amplifier circuit is usually frequency dependent 

since the input and output matching networks generally depend on frequency. It is therefore 

possible for an amplifier to be stable at its design frequency but unstable at other frequencies. 

Careful amplifier design should consider this possibility. 

 

Requirements for unconditional stability 

The following conditions must be satisfied by Γ𝑆 and Γ𝐿 ,if the amplifier is to be unconditionally 

stable: 

 

|Γ𝑖𝑛| = |𝑆11 +
𝑆21𝑆12Γ𝐿

1−𝑆22Γ𝐿
| <   1                           ------ (1) 

|Γ𝑜𝑢𝑡| = |𝑆22 +
𝑆12𝑆21Γ𝑆

1−𝑆11Γ𝑆
| <   1                        -------- (2) 

 

 

If the device is unilateral (S12 = 0), these conditions reduce to the simple results that |S11| < 1 

and |S22| < 1 are sufficient for unconditional stability.  Otherwise, the inequalities define a range 

of values for Γ𝑆 and Γ𝐿 where the amplifier will be stable. Finding this range for Γ𝑆 and Γ𝐿  can 

be facilitated by using the Smith chart and plotting the input and output stability circles. 

 The stability circles are defined as the loci in the Γ𝐿(or Γ𝑆) plane for which |Γ𝑖𝑛| = 1 (or 

|Γ𝑜𝑢𝑡| = 1). The stability circles then define the boundaries between stable and potentially 



 

unstable regions of Γ𝑆 and Γ𝐿 . Γ𝑆 and Γ𝐿 must lie on the Smith chart (|Γ𝑆| < 1, |Γ𝐿| < 1 for passive 

matching networks). 

We can derive the equation for the output stability circle as follows: 

Express the condition that |Γ𝑖𝑛| = 1     using equation (1) 

|Γ𝑖𝑛| = |𝑆11 +
𝑆21𝑆12Γ𝐿

1−𝑆22Γ𝐿
| =   1      ------- (3) 

|𝑆11(1 − 𝑆22Γ𝐿) + 𝑆21𝑆12Γ𝐿| = |1 − 𝑆22Γ𝐿|            ------- (4) 

Now define ∆ as the determinant of the scattering matrix:  

∆  = S11 S22 − S12 S21 

We can write the above equation as, 

|𝑆11 − ∆Γ𝐿| = |1 − 𝑆22Γ𝐿|                -------- (5) 

 

 
In the complex plane, an equation of the form |Γ − 𝐶| = 𝑅 represents a circle having a center 

at C ( a complex number) and a radius R ( a real number). The above resultant equation defines 

the output stability circle with a center CL and radius RL where, 

𝐶𝐿 =
(𝑆22−Δ𝑆11

∗ )∗

|𝑆22|2−|∆|2
                   (𝑐𝑒𝑛𝑡𝑒𝑟)          -------- (6a) 

                                                        

𝑅𝐿 = |
𝑆12𝑆21

|𝑆22|2−|∆|2
|                (𝑟𝑎𝑑𝑖𝑢𝑠)            -------- (6b) 

Similar results can be obtained for the input stability circle by interchanging S11 and S22. 

𝐶𝑆 =
(𝑆11−Δ𝑆22

∗ )∗

|𝑆11|2−|∆|2
                   (𝑐𝑒𝑛𝑡𝑒𝑟)          -------- (7a) 

                                                        

𝑅𝑆 = |
𝑆12𝑆21

|𝑆11|2−|∆|2|                (𝑟𝑎𝑑𝑖𝑢𝑠)            -------- (7b) 

  



 

 
 

 Given the scattering parameters of the transistor, we can plot the input and output 

stability circles to define where |Γ𝑖𝑛| = 1 and |Γ𝑜𝑢𝑡| = 1. On one side of the input stability circle 

we will have |Γ𝑜𝑢𝑡| < 1, while on the other side we will have |Γ𝑜𝑢𝑡 |  > 1.  

 Similarly, we will have |Γ𝑖𝑛|  < 1 on one side of the output stability circle, and |Γ𝑖𝑛|  > 1 

on the other side. We need to determine which areas on the Smith chart represent the stable 

region, for which |Γ𝑖𝑛|  < 1 and |Γ𝑜𝑢𝑡|  < 1.  

  

 Consider the output stability circles plotted in the  Γ𝐿 plane for |S11| < 1 and |S11| > 1, as 

shown in Figure. If we set ZL = Z0, then Γ𝐿 = 0, and (1) shows that |Γ𝑖𝑛|  =|S11|. Now if |S11| < 

1, then |Γ𝑖𝑛|< 1, so Γ𝐿= 0 must be in a stable region. This means that the center of the Smith 

chart (Γ𝐿 = 0) is in the stable region, so all of the Smith chart (|Γ𝐿 | < 1) that is exterior to the 

stability circle defines the stable range for Γ𝐿 . This region is shaded in Figure (a). Alternatively, 

if we set ZL = Z0 but have |S11| > 1, then |Γ𝑖𝑛| > 1 for Γ𝐿 = 0, and the center of the Smith chart 

must be in an unstable region. In this case the stable region is the inside region of the stability 

circle that intersects the Smith chart, as illustrated in Figure (b). Similar results apply to the 

input stability circle. 

    If the device is unconditionally stable, the stability circles must be completely outside (or 

totally enclose ) the smith chart. We can state this mathematically as,  

||𝐶𝐿| − 𝑅𝐿| > 1         𝑓𝑜𝑟          |𝑆11| < 1          ----- (8a) 

||𝐶𝑆| − 𝑅𝑆| > 1         𝑓𝑜𝑟          |𝑆22| < 1          ----- (8a) 

 

If |S11| > 1 or |S22| > 1, the amplifier cannot be unconditionally stable because we can always 

have a source or load impedance of Z0 leading to Γ𝑆 = 0 or  Γ𝐿= 0, thus causing |Γ𝑖𝑛| > 1 or |Γ𝑜𝑢𝑡| 

> 1. If the device is only conditionally stable, operating points for  Γ𝑆 and  Γ𝐿 must be chosen 

in stable regions, and it is good practice to check stability at several frequencies over the range 

where the device operates. Also note that the scattering parameters of a transistor depend on 

the bias conditions, and so stability will also depend on bias conditions.  

 

Tests for Unconditional Stability  

 The stability circles discussed above can be used to determine regions for Γ𝑆 and  Γ𝐿 

where the amplifier circuit will be conditionally stable, but simpler tests can be used to 

determine unconditional stability. One of these is the K − ∆  test, where it can be shown that a 

device will be unconditionally stable if Rollet’s condition, defined as, 



 

𝐾 =
1−|𝑆11|2− |𝑆22|2+|∆|2

2|𝑆12𝑆21|
    >   1                ------- (9) 

 

Along with the auxiliary condition that 

 

|∆| = |𝑆11𝑆22 − 𝑆12𝑆21| <   1          --------(10) 

 

are simultaneously satisfied. These two conditions are necessary and sufficient for 

unconditional stability, and are easily evaluated. If the device scattering parameters do not 

satisfy the K −∆ test, the device is not unconditionally stable, and stability circles must be used 

to determine if there are values of Γ𝑆 and  Γ𝐿 for which the device will be conditionally stable. 

Also recall that we must have |S11| < 1 and |S22| < 1 if the device is to be unconditionally stable. 

While the K − ∆ test  is a mathematically rigorous condition for unconditional stability, it 

cannot be used to compare the relative stability of two or more devices because it involves 

constraints on two separate parameters. 

 

𝝁 -test 

combines the scattering parameters in a test involving only a single parameter, 𝜇 . 

𝜇  is defined as, 

𝜇 =
1−|𝑆11|2

|𝑆22−∆𝑆11
∗ |+|𝑆12𝑆21|

       > 1       --------  (11) 

 

If   𝜇 > 1, the device is unconditionally stable. In addition, the larger values of 𝜇 imply greater 

stability. 

 

Development of 𝝁 -test 

Γ𝑜𝑢𝑡 = 𝑆22 +
𝑆12𝑆21Γ𝑆

1−𝑆11Γ𝑆
=

𝑆22−∆Γ𝑆

1−𝑆11Γ𝑆
        --------(12) 

Where, ∆ is the determinant of the scattering matrix. Unconditional stability implies that |Γ𝑜𝑢𝑡| 

< 1 for any passive source termination, Γ𝑆. The reflection coefficient for a passive source 

impedance must lie within the unit circle on a Smith chart, and the outer boundary of this circle 

can be written as Γ𝑆 = e jφ. The expression given in (12) maps this circle into another circle in 

the Γ𝑜𝑢𝑡 plane.  

Substituting Γ𝑆 = e jφ into (12) and solving for e jφ: 

𝑒𝑗∅ =
𝑆22−Γ𝑜𝑢𝑡

∆ − 𝑆11Γ𝑜𝑢𝑡
 



 

 
This equation is of the form | Γ𝑜𝑢𝑡 − C| = R, representing a circle with center C and radius R in 

the Γ𝑜𝑢𝑡 plane. Thus the center and radius of the mapped |Γ𝑆| = 1 circle are given by, 

 

𝐶 =
𝑆22−∆𝑆11

∗

1−|𝑆11|2         -------- (13a) 

𝑅 =
|𝑆12𝑆21| 

1−|𝑆11|2         --------- (13b) 

 

If points within this circular region are to satisfy |Γ𝑜𝑢𝑡| < 1, then we must have that , 

 |C| + R < 1   --------   (14) 

Substituting equation (13) in equation (14) gives, 

|𝑆22 − ∆𝑆11
∗ | + |𝑆12𝑆21| < 1 − |𝑆11|2 

Rearranging the above equation yields the 𝜇- test. 
1−|𝑆11|2

|𝑆22−∆𝑆11
∗ |+ |𝑆12𝑆21|

> 1  

           

 Development of K − ∆ test   

The K − ∆ test  can be derived  more simply from the µ-test. 
1−|𝑆11|2

|𝑆22−∆𝑆11
∗ |+ |𝑆12𝑆21|

> 1  

|𝑆22 − ∆𝑆11
∗ | < 1 − |𝑆11|2 − |𝑆12𝑆21|  -------- (15) 

Rearranging and squaring gives, 



 

 
Which yields  the Rollet’s condition 

 

𝐾 =
1−|𝑆11|2− |𝑆22|2+|∆|2

2|𝑆12𝑆21|
    >   1  

 

The squaring of equation (15) introduces an ambiguity in the sign of the right hand side, thus 

requiring an additional condition. The right hand side of equation (15) should be positive before 

squaring. Thus, 

 
Which is the required additional condition. 

 

 

 

 

 

 

 

 

 

 



 

 

SINGLE-STAGE TRANSISTOR AMPLIFIER DESIGN for maximum gain 

 

 
 A single-stage microwave transistor amplifier can be modelled by the circuit shown in  

Figure, where matching networks are used on both sides of the transistor to transform the input 

and output impedance Z0 to the source and load impedances ZS and ZL . The most useful gain 

definition for amplifier design is the transducer power gain, which accounts for both source 

and load mismatch. We can define separate effective gain factors for the input (source) 

matching network, the transistor itself, and the output (load) matching network as follows: 

𝐺𝑆 =
1−|Γ𝑆|2

|1−Γ𝑖𝑛Γ𝑆|2     ------- (1a) 

𝐺0 = |S21|2           -------(1b) 

𝐺𝐿 =
1−|Γ𝐿|2

|1−S22Γ𝐿|2     ------(1c) 

The overall transducer gain is then GT = GSG0GL . The effective gains GS and GL of the 

matching networks may be greater than unity. This is because the unmatched transistor would 

incur power loss due to reflections at the input and output of the transistor, and the matching 

sections can reduce these losses. 

 Design for Maximum Gain (Conjugate Matching) 

 After the stability of the transistor has been determined and the stable regions for Γ𝑆 and  

Γ𝐿 have been located on the Smith chart, the input and output matching sections can be 

designed. Since G0  is fixed for a given transistor, the overall transducer gain of the amplifier 

will be controlled by the gains, GS and GL , of the matching sections. 

  Maximum gain will be realized when these sections provide a conjugate match 

between the amplifier source or load impedance and the transistor.  

 We know that maximum power transfer from the input matching network to the 

transistor will occur when 

                              Γ𝑖𝑛 = Γ𝑆
∗  ------(2a) 

 and that maximum power transfer from the transistor to the output matching network will 

occur when  

                 Γ𝑜𝑢𝑡 = Γ𝐿
∗     --------  (2b)  

With the assumption of lossless matching sections, these conditions will maximize the overall 

transducer gain. 

The maximum gain is given by, 

𝐺𝑇𝑚𝑎𝑥
=

1

1−|Γ𝑆|2
|S21|2 1−|Γ𝐿|2

|1−S22Γ𝐿|2        --------  (3) 

 



 

In the general case with a bilateral (S12 = 0) transistor, Γ𝑖𝑛 is affected by Γ𝑜𝑢𝑡 and vice versa, so 

the input and output sections must be matched simultaneously. The necessary equations are: 

Γ𝑖𝑛 = 𝑆11 +
𝑆21𝑆12Γ𝐿

1−𝑆22Γ𝐿
   = Γ𝑆

∗--------(4) 

Γ𝑜𝑢𝑡 = 𝑆22 +
𝑆12𝑆21Γ𝑆

1−𝑆11Γ𝑆
= Γ𝐿

∗    --------(5) 

 

 

 
Solutions to  Γ𝑆 and  Γ𝐿 are only possible if the quantity within the square root is positive, and 

it can be shown that this is equivalent to requiring K > 1. Thus, unconditionally stable devices 

can always be conjugately matched for maximum gain, and potentially unstable devices can be 

conjugately matched if K > 1 and |∆| < 1.  

 The results are much simpler for the unilateral case. When S12 = 0,  Γ𝑆 = 𝑆11
∗  and  Γ𝐿 =

𝑆22
∗  , and the maximum unilateral transducer gain  is 



 

𝐺𝑇𝑈𝑚𝑎𝑥
=

1

1 − |𝑆11|2
|S21|2

1

1 − |S22|2
 

 

The maximum transducer power gain occurs when the source and load are conjugately matched 

to the transistor. If the transistor is unconditionally stable, so that K > 1, the maximum 

transducer power gain can be simply rewritten as follows:  

𝐺𝑇𝑚𝑎𝑥
=

|S21|

|S12|
(𝐾 − √𝐾2 − 1) 

 

The maximum transducer power gain is also sometimes referred to as the matched gain. The 

maximum gain does not provide a meaningful result if the device is only conditionally stable 

since simultaneous conjugate matching of the source and load is not possible if K < 1. In this 

case a useful figure of merit is the maximum stable gain, defined as the maximum transducer 

power gain with K = 1.  

Thus,      𝐺𝑚𝑠𝑔 =
|S21|

|S12|
 

The maximum stable gain is easy to compute and offers a convenient way to compare the gain 

of various devices under stable operating conditions. 

 

 

Single stage amplifier design 

 

 
 

 

 



 

Low-Noise Amplifier Design  

 Besides stability and gain, another important design consideration for a microwave 

amplifier is its noise figure. In receiver applications especially it is often required to have a 

preamplifier with as low a noise figure as possible since, the first stage of a receiver front end 

has the dominant effect on the noise performance of the overall system.  

 Generally it is not possible to obtain both minimum noise figure and maximum gain for 

an amplifier, so some sort of compromise must be made. This can be done by using constant-

gain circles and circles of constant noise figure to select a usable trade-off between noise figure 

and gain. Here we will derive the equations for constant–noise figure circles and show how 

they are used in transistor amplifier design.  

 

The noise figure of a two-port amplifier can be expressed as  

𝐹 = 𝐹𝑚𝑖𝑛 +
𝑅𝑁

𝐺𝑆
|𝑌𝑆 − 𝑌𝑜𝑝𝑡|

2
       ------ (1) 

where the following definitions apply:  

YS = GS + j BS = source admittance presented to transistor. 

 Yopt = optimum source admittance that results in minimum noise figure. 

 Fmin = minimum noise figure of transistor, attained when YS = Yopt.  

RN = equivalent noise resistance of transistor.  

GS = real part of source admittance.  

Instead of the admittance YS and Yopt, we can use the reflection coefficients Γ𝑆 and Γ𝑜𝑝𝑡,  

𝑌𝑆 =
1

𝑍0
 
1−Γ𝑆

1+Γ𝑆
        ---- (2a) 

 

𝑌𝑜𝑝𝑡 =
1

𝑍0
 
1−Γ𝑜𝑝𝑡

1+Γ𝑜𝑝𝑡
        ---- (2b) 

 

Γ𝑆  is the source reflection coefficient. The quantities Fmin, Γ𝑜𝑝𝑡 and RN   are characteristics of 

the particular transistor being used, and are called the noise parameters of the device; they may 

be given by the manufacturer or measured. 

 

Using equations for  YS and Yopt , we can express the quantity  |𝑌𝑆 − 𝑌𝑜𝑝𝑡|
2
 interms of  Γ𝑆 and 

Γ𝑜𝑝𝑡 as, 

|𝑌𝑆 − 𝑌𝑜𝑝𝑡|
2

=
4

𝑍0
2  

|Γ𝑆−Γ𝑜𝑝𝑡|
2

    |1+Γ𝑆|2      |1+Γ𝑜𝑝𝑡|
2     --------(3) 

 

In addition,  

𝐺𝑆 = 𝑅𝑒{𝑌𝑆} =
1

2𝑍0
(

1−Γ𝑆

1+Γ𝑆
 +

1−Γ𝑆
∗

1+Γ𝑆
∗

 

) =
1

𝑍0
 

1−|Γ𝑆|2

    |1+Γ𝑆|2     -----(4) 

 

Using these results, Noise figure F is given as, 

𝐹 = 𝐹𝑚𝑖𝑛 +
𝑅𝑁

𝐺𝑆
|𝑌𝑆 − 𝑌𝑜𝑝𝑡|

2
  

𝐹 = 𝐹𝑚𝑖𝑛 +
4𝑅𝑁

𝑍0

|Γ𝑆−Γ𝑜𝑝𝑡|
2

(1−|Γ𝑆|2)|1+Γ𝑜𝑝𝑡|
2       -------(5) 

 

For a fixed Noise figure F, this result defines a circle in the Γ𝑆 plane. 



 

 

Noise figure parameter  N is defined as, 

 

𝑁 =
|Γ𝑆−Γ𝑜𝑝𝑡|

2

(1−|Γ𝑆|2)
       ------- (6) 

 

Using equation (5), N can be written as, 

 

𝑁 =
𝐹−𝐹𝑚𝑖𝑛
4𝑅𝑁

𝑍0
⁄

  |1 + Γ𝑜𝑝𝑡|
2
  -----(7)  

   

N is a constant for a given noise figure and set of noise parameters.  Equation (6) can be 

rewritten as, 

 
 

 

 Generally it is not possible to obtain both minimum noise figure and maximum gain for 

an amplifier, so some sort of compromise must be made. This can be done by using constant-

gain circles and circles of constant noise figure to select a usable trade-off between noise figure 

and gain. 

 

 

 

 






























































































